Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Buongiorno a tutti e buon inizio settimana !
$log_(1/2)(x/(x+1))<1$
Campo esistenza :$(x/(x+1))>0$
$x>0$
$(x+1)>0,x>-1$
-1 0
---------__________
----------------_____
$D=]-infty,-1<span class="b-underline">0,+infty[$
$log_(1/2)(x/(x+1))<log_(1/2)(1/2)$
$(x/(x+1))>(1/2)$
$(x/(x+1))-(1/2)>0$
$((x-1)/(2(x+1)))>0$
$(x-1)>0,x>1$
$2(x+1)>0,x> -1$
soluzioni $((x-1)/(2(x+1)))>0,]-infty,-1<span class="b-underline">1,+infty[$
facendo l'intersezione con il campo di esistenza vengono sempre ]-infty,-11,+infty[ che però nn mi spunta tra le soluzioni , dov'è l'errore ...
Salve,vorrei un chiarimento forse banale sui momenti delle forze..
io ho un esercizio abbastanza semplice concettualmente, ovvero un disco di massa M e raggio R che ruota intorno al suo asse orizzontale su cui è avvolto un filo di massa trascurabile e all'estremità libera del filo è attaccato un corpo che ha una certa massa m, e tra il disco e il filo non c'è attrito.Mi chiede di calcolare l'accelerazione del corpo la tensione del filo e la reazione delle forze sul vincolo del disco.
La mia ...
Salve a tutti, sono alle prese con un problema di fisica riguardante i principi della dinamica:
due corpi di massa [tex]m_1[/tex] 2 kg e [tex]m_2[/tex] 2kg sono legati tramite una carrucola in un piano inclinato di 30°, calcolare l'accelerazione del sistema e la tensione della fune. Io ho provato a mettere a sistema ma trovo il risultato 19,6 come accelerazione, e la tensione non riesco a calcolarla. Mi potreste dare un'aiuto?? Grazie.
Ho il seguente integrale doppio
Integrale lungo T di \(\displaystyle x/[1+sqrt(x^2+y^2)] dx dy \)
dove \(\displaystyle T = { (x,y) : x^2 + y^2 =0 }
\)
senza cambiamento di variabili so che \(\displaystyle 0
Ho un problema nel capire la ricerca del codominio funzioni a più variabili:
Esercizi del 'De Michele-Forti':
ad esempio:
$z=2x -5y$
il dominio è: tutto $RR^2$, il risultato mi dice che è tutto $RR^2$ anche per il codominio, ma come?
problemi anche con:
$z=xy/(x^2 +y^2)$
il dominio:
$RR^2 -{(0,0)}$
per trovare il codominio pongo:
$x=y$: $z=1/2$
mentre:
$x=-y$: $z=-1/2$
e quindi: $-1/2 <= z <= 1/2$ in accordo al ...
Salve a tutti volevo un aiuto per risolvere questi esercizi per poter poi avere uno schema mentale per poter poi svilupparne altri . Grazie in anticipo
Provare per induzione che :
$ sum_(k=0)^(n) 3^k = (3^(n+1) - 1 ) / 2 $
Salve a tutti, nel mio libro dopo la formula di integrazione per sostituzione viene presentato il seguente testo che non riesco a capire bene:
$[\intf(x)dx]_{x=g(t)}=\intf(g(t))g'(t)dt$
Osserviamo che la formula di integrazione per sostituzion non richiede, per la sua validità, che $g(t)$ sia una funzione invertibile; naturalmente il risultato dell'integrazione indefinita è espresso in funzione di t, mediante la posizione $x=g(t)$, con $x$ che varia nel codominio della funzione g. ...
devo fare l'integrale curvilineo di \(\displaystyle w=y^2dx-x^2dy \) lungo l'arco di circonferenza \(\displaystyle y^2+x^2=1\) contenuto nel primo quadrante di primo estremo \(\displaystyle (0,1) \) e di secondo estremo \(\displaystyle (1,0) \).
Io ho pensato di considerare lìeq parametrica della circonferenza e fare \(\displaystyle x=cost \) e \(\displaystyle y=sent \) con t appartente a \(\displaystyle [0,Pigreco/2] \) ma lintegrale mi esco 0 invce di -4/3 pigreco perchè ragazzi?
Allora ho bisogno di un aiuto..So come trovare i punti estremanti in un determinato intervallo, ma in questo caso è la funzione SIGN(X) a darmi problemi...La funzione in esame è questa: f(x)=|x-1|e^x nell'intervallo [2,2] ... La derivata non è un problema dato che il valore assoluto di (x-1) sarà uguale a SIGN(X-1)..Il problema è quando devo andare a studiare gli estremi perchè non ho ben capito come sviluppare la funzione segno...Attendo qualche aiuto
devo calcolare l'intervallo di tempo che impiega una automobile per sorpassare un camion sapendo che quest'ultimo è lungo $20 m$ e viaggia a $20m/s$ mentre l'auto è lunga$4m$ e viaggia a $40m/s$.
ho pensato di trovarmi le leggi orarie $s=20t$ e $s=40t$ però come faccio a metterci la lunghezza e a trovare il tempo per il sorpasso? per favore me lo potete spiegare per bene
Salve a tutti. Non riesco a risolvere questi limiti, secondo me anche banali, che mi ritrovo mentre svolgo lo studio di funzione, in particolare quando faccio lo studio agli estremi del dominio.
$lim_(x->-1^+)log((x^2-1)/x)$
$lim_(x->0^-)log((x^2-1)/x)$
$lim_(x->1^+)log((x^2-1)/x)$
Avevo pensato di scomporre la funzione logaritmo così:
$log((x^2-1)/x)=log(x^2-1)-log(x)$
ma poi sbatto contro $lim_(x->-1^+)log(x)$ e $lim_(x->0^-)log(x^2-1)$
mentre il terzo mi uscirebbe:
$lim_(x->1^+)log((x^2-1)/x)=lim_(x->1^+)log(x^2-1)-lim_(x->1^+)log(x)=-oo-log(1)=-oo$
Avete qualche idea?
Grazie in anticipo.
Salve ragazzi sto svolgendo un esercizio e volevo in alcuni punti delle conferme, in altri dei chiarimenti.
iv)Dati i sottospazi $H = f[(x; y; z) in R^3 : 2x - y = 0] e S = L[(1; 2; 2); (3;-1; 1); (-1; 5; 3)].$ Determinare una base per S$nn$H e S + H
allora dalla relazione di grassmann so che dimH+dimS=dim(S+H)+dim(S$nn$H)
quindi trovo una base per H = [(1,2,0);(0,0,1)] e base per S=[(1,2,2);(0-7,-5)]. Ora mi serve la base di S$nn$H cosi riesco a determinare anche S+H... Se non ricordo male devo mettere i vettori ...
La domanda è semplicissima:
$\int (sin(x))/(sin(x)^2+1) dx = ?$
Ho letto parecchio sulla comparazione serie integrale,ma in due parole,posso dire che data una serie e un integrale aventi stessi estremi e che sia la stessa funzione solo una espressa come serie l'altra integrale,''entrambe''positve e monotone in un intorno di infinito allora se l'integrale converge,la serie converge,e viceversa,se l'integrale diverge,la serie diverge,e viceversa..va bene?
Salve a tutti ho un problema nella comprensione del testo di un esercizio...
Fissato nel piano usuale \(\displaystyle E^2 \) un riferimento cartesiano ortonormale \(\displaystyle RC(O,x,y)\), determinare le rette per il punto \(\displaystyle P=P(-1,-1/2) \) sommetriche della retta \(\displaystyle r: 2x-y-1=0 \) rispetto al punto \(\displaystyle Q=Q(-1,2) \)
L'esercizio chiede: determinare le rette simmetriche ad una retta rispetto ad un punto
la mia domanda è
Come può una retta avere più di ...
ragazzi ,se ho una funzione f:[a,b] -->R continua in questo intervallo ,esiste una primitiva G di f tale G(a)=1? esiste una primitiva G di f che ha un punto angoloso?se G(a)=G(b) allora esiste un punto c appartenente a (a,b) in cui risulta f(c) =0?
il terzo quesito mi sembrerebbe una applicazione del teorema di rolle,no? dato che f è la derivata di G..correggetemi se dico baggianate comunque, per quanto riguarda i primi due non saprei proprio cosa dire; mi dareste delle indicazioni?
Ho il seguente esercizio, ma ho delle perplessità intorno alle ipotesi. Nella fattispecie, siccome il testo proviene da una dispensa nella quale sono stati trovati parecchi errori, ho il timore che manchi qualcosa.
Sia \(\displaystyle f \in \mathcal{C}(\left[0,1 \right]) \). Calcolare \[\displaystyle \lim_{n \to \infty} \sqrt{n} \int_{0}^{1} \frac{f(x)}{1+nx^{2}} \ dx \]
Ora, io dovrei essere riuscito a risolverlo, ma con l'aggiunta di una ipotesi: \(\displaystyle f \in ...
Buongiorno a tutti! Mi sono imbattuta in questo esercizio, che mi da' qualche problema.
Verificare che l'applicazione T di $R^2$ in $R^2$ definita da $T(u,v)=(u^2v+ue^u,u^3v^2+ve^v)$ e' un diffeomorfismo regolare tra un aperto A contenente (1,0) e un aperto B contenente (e,0). Detto $T^-1$ il diffeomorfismo inverso, calcolare $J_(T^-1)(e,0)$.
Innanzitutto, ho provato a verificare che T fosse iniettiva:
$T(u_1,v_1)=T(u_2,v_2)$ dovrebbe restituire $(u_1,v_1)=(u_2,v_2)$ ma mi sono ...
Abbiamo un canale con una larghezza di banda di 4 KHz. Se vogliamo spedire dati alla velocità di 100 kbps quale è il minimo valore possibile per SNR? e per SNR?
Salve, da poco ho iniziato a svolgere esercizi sui baricentri, durante un esercizio però mi è sorto un problema, ricavare l'orientamento di una curva $\Gamma$ per mettere il segno $ + - $ rispettivamente se è orientata nell'ordine delle $ t $ crescenti o decrescenti.
Prendiamo l'esempio della curva $\Gamma$ con $ y=x^2 $, in forma parametrica questa curva avrà espressione:
$ { ( x=t ),( y=t^2 ):} $ con $ t in [-3,1] $
Supponendo sempre che la ...