Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
ciao ragazzi!sto risolvendo un quesito sui limiti di un esame di analisi 1 della mia università il limite in cui mi sono imbattuto è risolubile mediante maclaurin..faccio sempre cosi,in quanto il nostro prof non ha mai spiegato taylor!e mi trovo sempre bene! la formula che uso è:
per$lim_(x->0)$ ho $f(x)=f(0)+f'(0)x+1/2f''(0)x^2+1/3!f'''(0)x^3$ ...
nel mio caso ho:
$lim_(x->0)((1-e^(-5x^3))/x^3)$ con maclaurin i primi due termini sono nulli.. ma quando arrivo alla derivata seconda è un casino!!!!!potete spiegarmi se esiste ...
L'unita' immaginaria e' definita come $i=sqrt(-1)$ che deriva dalla risoluzione dell'equazione quadratica $x^2-1=0$,
da cui si ottengono due soluzioni: $x^2=1$ , $sqrt(x^2) = sqrt(+-1)$ e quindi $x_1=sqrt(1)$ , che possiamo indicare come $(1,0)$, e $x_2=sqrt(-1)$, che possiamo
indicare con $(0,1)$ che e' poi la nostra unita' immaginaria $i$.
Quindi posso scrivere che $sqrt(-2)=(0,2)$ ?
E che il prodotto di $sqrt(-2)*sqrt(-2)=(0,2)*(0,2)=(0*0 - 2*2, 0*2 + 2*0) = (-4,0) = -4 in RR$ ??
23
15 gen 2011, 11:00
Buongiorno a tutti. Mi sono imbattuto in un esercizio che sembrerebbe molto semplice. Data una forma differenziale $w:=y dx+log(8-x^2) dy$ e la curva $h=(2cos t,sin t) t in [0,pi/2] $. Allora per calcolare l'integrale di linea di $omega$ uso la formula $int_(0)^(pi/2) omega(h(t))*h'(t) dt$. Ora però come devo procedere? Grazie a chiunque mi risponderà!
Ciao a tutti,
a sorpresa ho scoperto di dover risolvere un esercizio sugli integrali che non credevo di dover affrontare.
Non so molto da dove cominciare, il testo è questo:
I = ∫A ey dx dy
A = { (x,y) € R; 0 ≤ y ≤ 1-x, x ≤ y ≤ 2x }
(Dove € sta per appartiene!)
Spero abbiate tempo e voglia di aiutarmi il piu in fretta possibile!
Grazie a tutti,
Luca
$int 1/(x(logsqrt(x))^2) " d"x$ mi esce $2/log(sqrt(x))$ ma se vado a derivare mi trovo un radice di x invece di x...qualcuno sa spiegarmi perchè?
Ciao a tutti.
Ho la funzione $\psi(\lambda)=\frac{e}{\pi\lambda}Im(e^{-\omega(\lambda-1)^{\frac{1}{4}}})$ definita sull'intervallo $[1,\infty]$ e vorrei calcolarne l'integrale (dovrebbe essere 1).
Mi è suggerito di considerare la funzione complessa $e^{-\omega(z-1)^{\frac{1}{4}}}$ (scegliendo la determinazione del logaritmo sul piano complesso "tagliando" l'intervallo reale $[1,\infty]$). Integrando sulla curva che va da $\infty$ a 1 appena sopra il taglio effettuato, che fa un mezzo giro intorno a 1 e torna a $\infty$ sotto il taglio, ...
Buonasera,
Ho una questione, magari scontata, sulle terne pitagoriche.
Conosco le formule per ricavarle, ma sono tutte riferite a numeri naturali (come giusto che sia).
Ma come posso ricavarmi la/le terne pitagoriche aventi come valore un numero non intero? vi è un modo?
Ad esempio:
[tex](\sqrt1469)^2*50^2=63^2[/tex]
Ovviamente se inserisco direttamente il numero sotto radice non potrà mai venirmi preciso, quindi preferisco questa forma.
e torna perfettamente.
Io ho a ...
Studiando una serie di esercizi già svolti,ho letto che la funzione $u(x,y)=x^2$ non può essere parte reale di funzioni analitiche del tipo $f(z)=u(x,y)+iv(x,y)$ ma non capisco il perchè.Potete spiegarmelo?
Ciao a tutti,
io dovrei calcolare il seguente integrale: [tex]\int_{\gamma} \frac{dz}{z^2-1}[/tex] dove [tex]\gamma = \{z \in C | |z|=2\}[/tex].
Scomponendo la frazione [tex]\frac{1}{z^2-1} = \frac{1}{2(z+1)} - \frac{1}{2(z-1)}[/tex] ottengo [tex]\int_{\gamma} \frac{dz}{z^2-1} = \frac{1}{2}\int_{\gamma} \frac{dz}{z+1} - \frac{1}{2}\int_{\gamma} \frac{dz}{z-1}[/tex]
Secondo me, entrambi [tex]\int_{\gamma} \frac{dz}{z+1}[/tex] ed [tex]\int_{\gamma} \frac{dz}{z-1}[/tex] hanno come ...
salve, dovrei dimostrare che una matrice è diagonalizzabile... ho letto la teoria nel libro ma non mi è chiaro anche perchè non ci sono esempi... mi potreste spiegare voi come faccio?.... nel libro parla di molteplicità algebrica e geometrica, cose che non ho nemmeno chiare....
Sto cercando di determinare il modulo della funzione complessa $f(z)=cos(z)$ nel punto $z0=pi/2+iln(2)$.Siccome $z$ può essere riscritta esplicitando parte reale e parte immaginaria,cioè come $x+iy$,ho ritenuto opportuno utilizzare la formula di addizione per il coseno,scrivendo così $f(z)=cos(x)cos(iy)-sin(x)sin(iy)$,ma non mi vengono in mente idee per separare nettamente parte reale e parte immaginaria e andare così a calcolare il modulo.Potete aiutarmi?
ciao..Ho un problema..
esiste un omomorfismo di anelli dall'anello dei polinomi a coefficienti nell'anello $Z14$
all'anello dei polinomi a coefficienti nel campo $Z7$ ?
se sì,e per me esiste,me lo sapreste esplicitare e dimostrare perchè esiste, perchè è ben definito?
E la caratteristica, centra per l'esistenza dell'omomorfismo,giusto?
Grazie già da ora...
P.S. $Z7$ e $Z14$ non sono riuscito a scriverli bene, ma sono gli anelli ...
salve ragazzi!
durante il corso la mia prof, parlando di superfici triangolabili, ha citato (senza dimostrare) il teorema di Rado (ogni superficie compatta è triangolabile) specificando che NON vale il viceversa....ma riflettendoci, secondo me, il viceversa vale eccome: considerato che, se la superficie è triangolabile esiste un omeomorfismo tra questa e il poliedro del complesso dei triangoli, che è un compatto, e, ricordando che la compattezza è un invariante topologico, allora anche la ...
scusate io ho questa matrice 2x2 in C prima riga: $(1/3+2i/3, -2/3)$ seconda riga $2i/3, 2/3+i/3$. la traccia per trovare gli autovalori mi viene: $i+\lambda^2-\lambda-i\lambda$ ma quali sono gli autovalori?
salve a tutti!! devo calcolare la riparametrizzazione secondo lunchezza d'arco della curva biregolare
$ a(t)=( ( e^{t}+e^(-t))/2 , (e^{t}-e^(-t))/2 , t ) $
grazie mille
salve a tutti ho un problema del tipo:
se ho 60 ml di una soluzione di CaCl2 allo 0.64% come faccio a trovare il numero di moli di Cacl2?
io ho pensato che essendo la densità dell'acqua $1000(Kg)/m^3$:
massa di acqua:$1000(Kg)/m^3 * 60*10^(-6)m^3$
massa di Cacl2=$massa d'acqua*0.64%$
moli CaCl2 =massa CaCl2/peso molecolaredi CaCl2
va bene?
Salve ragazzi come devo ragionare su questo limite: [tex]lim_{x\rightarrow (1/e)^-}\frac{log(x)}{1+log(x)}[/tex] questo limite fa +oo
grazie mille
Ciao. Trovo difficoltà nel trovare l'immagine di un vettore, utilizzando però la matrice associata all'applicazione lineare.
Sia $f : R^3 -> R^3$ l'applicazione lineare tale che $(1,-1,2) in Ker(f); (1,1,1)$ è autovettore con autovalore $-3; f(-1,1,0)=(-3,-2,-6)$. L'immagine del vettore $(-3,-3,1)$ è...?
Questo esercizio sono riuscito a risolverlo facendo la combinazione lineare, ma non riesco invece a risolverlo utilizzando la matrice associata.
Per fare la matrice associata ho fatto:
scrivo le ...
ho questa funzione [tex]f(z)=\frac{e^{iz}}{(x^2 +i)(x-1)}[/tex] e ne devo calcolare i residui. ho un piccolo dubbio per quello che riguarda il residuo associato al polo [tex]z_0 = e^{i\frac{3}{4}\pi}[/tex], poiche se uso la tecnica di calcolo del residuo per rapporto di funzioni, mi viene qualcosa di improponibile a livello "visivo". c'è qualche "trucco"/semplificazione da fare per avere un residuo non troppo complicato?
Ciao a tutti!
Ho bisogno di un suggerimento per sbloccare questo limite:
$ lim_(x -> 0) (tan^2(x))^(1/((e^((1/x^2))))) $
Sono passata ai logaritmi e agli esponenziali così da risolvere
$ lim_(x -> 0) (1/((e^((1/x^2)))))*(ln(tan^2(x))) $
Ma arrivati a questo punto mi blocco comunque e non so come potrei andare avanti?
Mi date una mano?
Grazie mille