Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

$T : R4 [t] ->M22 (R) $
$ T(p) = | p(0) p(1) | $
$ |p"(0) p(-1) | $
mi spiegate solo perchè non è iniettiva? grazie! ( le barre indicano la matrice)

Ciao, sto affrontando il discorso della diagonalizzazione di una matrice e volevo sapere se quanto ho appreso è corretto.
Se si verificano le seguenti condizioni, e cioè che:
1) ho un'applicazione lineare $T$ definita, per esempio, da $V$ a $W$, e una base di $V$ è data dai vettori $v_1..v_n$;
2) si verifica che $T(v_i)=a_i * v_i$, cioè la base di $V$ è un insieme di autovettori;
Allora, se $A$ è una ...

$ { ( y'=(log(x))/y^4 ),( y(1)=1 ):} $ $ { ( y'=(log(x))/y^4 ),( y(1)=1 ):} $
questa la mia risoluzione
$ dy/dx=(log(x))/y^4rarr int_()^() y^4 dy=int_()^() log(x) dxrarr y^5/5=xlog(x)-int_()^() dxrarr y^5/5=x(log(x)-1)rarr y=root(5)(5x(log(x)-1)) $
quindi se fino a qui è giusto dalle condizioni iniziali
$ 1=root(5)(-5) $
stranamente ho sbagliato qualcosa...
sulle equazioni differenziali ho fatto più di 30 esercizi e finora mi tornavan tutti...ora ne ho trovate un paio a variabili separabili che mi creano qualche problema...chi mi sa dire dove ho sbagliato...?!?

Come posso risolvere il $lim_(k to + infty )((k!)^3)/((3k)! ) 27^k$ ? Le ho provate tutte ma non riesco a trovare il modo per risolvere anche perchè ho svolti pochi limiti con il fattoriale..

salve ragazzi, ho due problemi di geometria che proprio non riesco a risolvere pochè non capisco che procedimento usare, vi elenco i due problemi.
1. Data la retta r di equazioni (2x + y = 0 e 2x + z - 1 = 0), la retta s di equazioni (x - y = 0 e x - z + 1 = 0) e il piano di eq. y - z = 0, determinare il piano contenente la reta r ed ortogonale al piano dato.
io ho calcolato i direttori della retta r e il vettore affinchè i due piani siano ortogonali (mi viene il vettore 0,1,1) ma non ...
Si tratta di un problema composto da più quesiti, ve ne mostro solo uno poiche' su gli altri non ho riscontrato dubbi.
f: R^3->R^3
f(1,2,k)=(2+k,3,0) , f(2,k+1,-1)=(1,1,-2) , f(-3,1,5)=(1,k,2)
Per il valore k del punto (B) provare che R^3=Im(f) + Ker(f) e determinare la proiezione di 5e1 su Im(f) rispetto a questa decomposizione.
p.s. il k in questione è =1 , e i vettori sopra scritti sarebbero in realta' scritti in colonna.
Io attraverso la formula della dimensione sono giunto ...

Salve a tutti, l'esercizio è il seguente:
In un reattore si fanno reagire azoto e idrogeno per produrre ammoniaca.
[tex]N_2 (g) + 3H_2 (g) \leftrightarrows 2NH_3 (g)[/tex]
[tex]1000 \mbox{ }L[/tex] di [tex]H_2[/tex] misurati a [tex]298 \mbox{ }K[/tex] e a [tex]12 \mbox{ }atm[/tex] reagiscono con un eccesso di [tex]N_2[/tex]. Si formano [tex]2244 \mbox{ }g[/tex] di ammoniaca. Trovare la resa percentuale della reazione.
Vi descrivo il mio procedimento; applicando la legge dei gas ...

Ho un pendolo in quiete e mi viene data la lunghezza del filo e la massa collegata. Ad un certo istante gli viene data una forza J impulsiva orizzontale. Mi si richiede di calcolare il valore di J affinche il pendolo riesca a compiere un giro circolare.
Ho impostato l'equazione dell'impulso, ma non riesco a pensare come impostare l'equazione di conservazione di energia meccanica per ricavarmi il valore della velocità iniziale per trovare J...

Sicuramente questo integrale è facile da risolvere, ma non ci sono riuscito . I metodi di sostituzione che suggerisce il mio libro non mi hanno portato lontano... L'integrale è questo
[tex]\displaystyle \int \dfrac {1}{(a+x^2)^{3/2}}dx[/tex] Avevo provato a porre [tex]t=a+x^2[/tex] ma la situazione si complica. Forse non è la sostituzione migliore?

Ciao a tutti, giungo con l' ultimo di una lunga serie di esercizi:
Il processo gaussiano stazionario $X_t$ ha media nulla e covarianza $k_X(\tau) = 4e^-|\tau|$
Calcolare:
(a.) la densità di probabilità di $X_3$;
(b.) la funzione caratteristica congiunta di $X_-1$, $X_3$ e $X_4$
(c.) la densità spettrale di potenza di $X_t$.
Intanto essendo un processo a media nulla, la covarianza sarà uguale alla correlazione, quindi per il ...

Ragazzi vorrei sapere se il procedimento per queste serie è corretto e se qualcuno fosse così gentile ad aiutarmi a capire come dovrei procedere per la 7:
Vai a http://img121.imageshack.us/i/23405812.jpg/
Vai a http://img40.imageshack.us/i/60633432.jpg/
Vai a http://img98.imageshack.us/i/15683278.jpg/
Vai a http://img41.imageshack.us/i/24265416.jpg/
Aspetto con ansia una risposta.

Salve a tutti,
avrei bisogno di una mano con il seguente esercizio:
Provare la convergenza totale della serie di funzioni $ sum_(n= 2)^(oo) n ln (1+ ( |x|^n)/(n(n-1)^2)) $
Osserviamo che il termine generale $fn(x)=n ln (1+ ( |x|^n)/(n(n-1)^2))$ tende a zero solo se $ |x| \leq 1 $;
La serie può convergere in x se e solo se $ x in [-1,1] $;
Fissato $ x in [-1,1] $ si ha:
$|fn(x)|=n ln (1+ ( |x|^n)/(n(n-1)^2)) \leq n ln (1+ ( 1)/(n(n-1)^2))
Mi sono bloccato qui; che altro maggiorante posso trovare??
Mi potreste ...

Calcolare fx(0,1) dove
$ f(x,y)={ ( ((e^(x^2)-1)y)/x se x != 0 ),( 0 se x = 0 ):} $
la derivata parziale rispetto a x mi viene
$ ((e^(x^2)-1)y)/x=(2xe^(x^2)-(e^(x^2)-1)y)/x^2=(2x^2e^(x^2)-ye^(x^2)+y)/x^2 $
ora è possibile fare una cosa del genere...
$ (2x^2e^(x^2)-ye^(x^2)+y)/x^2=(2x^2e^(x^2))/x^2+(y-ye^(x^2))/x^2=2+0/0 $
il risultato immagino non sia 2 perchè rimane una parte che è indeterminata...o sbaglio ?!?
dove ho sbagliato ?!?

1. L’insieme delle soluzioni di un sistema lineare omogeno AX=0 con AЄMm,n, costituisce un ssv di ?
2. E le sol di AX=b sono ssv di ?
Io ho pensato che la 1 potrebbe essere Ker, perchè ponendo AX=0 è come se ponessi ogni riga (quindi equazione) =0, cioè quello che faccio per trovare il ker, ma non ne sono sicura. Per la 2 proprio non mi viene in mente niente di sensato!

salve ragazzi mi potete aiutare per favore? se ho una funzione, f: (A X B) X C in A X (B X C) definita da f((x,y),z)= (x,(y,z)) come faccio a dimostrare che è iniettiva e suriettiva?

Potreste darmi una definizione di dominio normale nel piano, ma soprattutto spiegarmi
se la circonferenza di raggio uno del primo quadrante definita dalle disequazioni
x>=0, y>=0 ; x^2 + y^2

Volevo cercare di capire dove è che sbaglio l'impostazione del problema, ho posto con la conservazione dell'energia gli elementi in gioco.. eppure il risultato è ancora lontano.. prima ho posto la quota del CM dell'asta, e dopo ho provato a riferirmi al punto della massa aggiuntiva in fondo all'asta..
http://imageshack.us/photo/my-images/82 ... gno02.jpg/

Ragazzi non so proprio dove mettere mani in questa serie......mi potete aiustare???
$ sum <(-1)^(n+1) ((n cosx)/(n+1))^n> $
Innanzi tutto ho pensato che è una serie a segni alterni quindi mi conviene studiare la serie dei valori assoluti che quindi diventa così:
$ sum <((n cosx)/(n+1))^n> $
Poi secondo voi, è giusto se applico il criterio della radice in modo da vedere per quali valori converge???il mio dubbio era pure ma se applico il criterio della radice $cosx$ non è sempre compreso tra -1 ed 1????Quindi ...
Salve a tutti
Ho un dubbio da risolvere...
In un testo di esame ho trovato questa domanda riguardo alla distribuzione binomiale:
Dato un vettore che contiene h numeri la cui distribuzione è di tipo binomiale caratterizzata da un numero di prove pari a 11, e probabilità di successo pari a 0.2, che valori può assumere il valore i-esimo del vettore?
a) i valori compresi tra 0 e 11
b) i valori compresi tra 0 e 1
c) 1 in caso di successo, 0 altrimenti
d) numero di volte che su h numeri ...
Come posso verificare che un'applicazione lineare è iniettiva ma NON suriettiva?
Con il teorema della dimensione sappiamo che:
$ dimV=dim(Im(f))+dim(Ker(f)) $
Se il sistema omogeneo associato alla matrice della f, ha come soluzione solo il vettore nullo, la dim(Ker(f)) =0 quindi iniettiva.
Possiamo dire che quando una f è iniettiva è sempre suriettiva(dal teorema della dimensione) ???
P.S
Ho un dubbio se ad esempio ho una:
$ f: R^4->R^3 $ quando vado ad applicare il teorema della dimensione, ...