Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Ciao ragazzi, ho ancora bisogno del vostro aiuto per una dimostrazione...sapete dirmi dove posso trovare la dimostrazione della seguente serie?
$ sum_(n = 1) ((-1)^(n+1))/n = ln 2 $
grazie infinite

La mia domanda è velocissima, ma la risposta potrebbe risolvermi svariati dubbi su una buona parte del programma di fisica.
mi trovo ad avere un integrale che (tra molte altre cose che però hanno a che fare con la fisica) contiene una cosa del tipo:
$ d T cos T $
ovviamente anche in fisica la d sta ad indicare una parte infinitesima.
la mia domanda è: quella cosa che ho scritto sopra, per angoli molto piccoli può essere approssimata con $senx$ ?
l'idea arriva dal ...

Ciao ragazzi, a giorni ho l'esame orale di analisi 1/2...purtroppo la nostra professoressa di esercitazioni è una che spesso e volentieri si imbroglia e cosi non so come dimostrare che, data fn la funzione potenza, risulta che
$ fn([0; +oo [) = [0, +oo [ $
l'inclusione da destra a sinistra e ovvia...non riesco a provare quella inversa ...sapreste darmi qualche dritta?...so solo che devo usare il teorema dell'esistenza della radice n-esima ma non ci arrivo proprio
mi serve questa dimostrazione ...

Ciao a tutti!
stavo cercando di fare chiarezza su questi due esercizi che ho provato a svolgere:
a) Usando gli sviluppi di taylor determinare l' ordine di infinito/infinitesimo di
$ 1/sin(x-9) - 1/tan(x-9) $ per $x->9$
b) Definire l'esistenza e la derivabilità di
$ sqrt(sin(ln (x)^(9) ) ) $
a) Per il primo l'ho impostato cosi:
$ lim_(x -> 9) ((tan(x-9) - sin(x-9))/(sin(x-9)tan(x-)))/|x-9|^B $
usando $ tan(x-9)=sin(x-9)/cos(x-9) $
sono arrivato in conclusione dopo semplici passaggi a ...

Data la funzione $f(x,y)={ ( root(3)(y)e^(-y^2/x^4) ),( 0 ):} $
La prima definita da $x!=0$
La seconda definita da $x=0$
Ho provato senza troppi problemi che esse sono continue e derivabili nel punto $(0,0)$. Devo ora provare la non differenziabilità.
Applicando la definizione di differenziabilità, devo calcolare il seguente limite:
$(root(3)(k)e^(-k^2/h^4))/sqrt(h^2+k^2)$ per $(h,k) to (0,0)$
e, affinchè sia differenziabile, deve essere 0.
Ora, provandomi a mettere sugli assi, o sulla generica ...

L'unico metodo che mi hanno insegnato è il metodo della separazione delle variabili. Alcuni esercizi però non mi vengono:
$\u_{t}=u_{x_x}+2u_{x}+tu$ con condizioni $\u_{x}(0,t)=u_{x}(1,t)=0$
come faccio? applicando il metodo della separazione in maniera non riesco ad andare avanti..
Oppure:
$\u_{t_t}-u_{x_x}+u_{x}=0$ con condizioni $\u(0,t)=u(\pi,t)=0$ trovo come soluzione $\u(t,x)=\sum c_{n}(\cos(sqrt((1-4n^{2})/2))x+\sinsqrt((1-4n^{2})/2))x) * \sin (nx)$ è possibile?

Salve a tutti,
ho ben chiaro il metodo di riduzione di Gauss-Jordan per righe, non riesco però proprio a capire come ridurre per colonne.
Da che elemento della matrice diverso da 0 inizio il procedimento di riduzione? Quale è la condizione da dover raggiungere?
Per quello che ho capito si parte da un elemento della prima riga diverso da zero e si riduce la colonna in modo che per ogni elemento non nullo alla sua destra (nelle colonne successive) ci siano solo zeri.
E' corretto? ...

ciao a tutti, nella dimostrazioe del lemma di abel la prima cosa che viene detta è che se la serie di potenze converge per $ bar(x) $ allora
$ lim_(n -> +oo) a_n (bar(x) - x^0)^n = 0 $
Perchè è così? da che teorema deriva?

Ciao, questo teorema recita più o meno così:
" Le seguenti proprietà sono tra loro equivalenti:"
1) $\ omega $ è esatta.
2) L'integrale curvilineo di $\ omega $ lungo una curva chiusa $\ gamma $ è pari a 0.
3) L'integrale di $\omega $ lungo una curva chiusa $\ gamma_1\ $ è uguale all'integrale di $\omega$ lungo una curva chiusa $\gamma_2 AA gamma_1, gamma_2$ con gli stessi estremi e stesso verso di percorrenza.
Occorre dimostrare queste ...

ragazzi potete aiutarmi su qst mezzo ex
Scrivere una base ortogonale del sottospazio S = [(1; 0; 1; 1); (1; 1; 2; 2); (0; 1; 0; 0); (2; 2; 2; 2)].
grz in anticipo!!!

Ciao,
Qualcuno saprebbe spiegarmi i passaggi da fare (calcoli) per questo esercizio sugli stimatori?
Testo:
Sia (X1,...,Xi) un campione casuale estratto da una variabile casuale con media mu e varianza sigma^2 pari a 2.
Dai i seguenti stimatori:
$ T1=1/n sum_(i = 1)^(n) (X i) $
$ T2=(X1) /2 + 1/(2(n-1)) sum_(i = 2)^(n) (X i) $ Dove X1, l'1 e' a pedice (non so come si mette a pedice nella formula!)
a) verificare se gli stimatori T1 e T2 sono corretti
b) verificare se lo stimatore T1 risulta più efficiente di T2 al variare ...
So che sono esercizi molto facili ma una risoluzione di questi esercizi mi aiuterebbe a capire meglio i casi più complicati, grazie
1) Un campo elettrostatico uniforme E = a$\vec x$ + b$\vec y$ interseca una superficie piana di area Σ. Calcolare il flusso Φ del campo E attraverso la superficie Σ se: a) essa sta nel piano xy, b) nel piano xz, c) nel piano yz. (Sol. a) Φ = 0, b) Φ = aΣ, c) Φ = bΣ)
2) Calcolare il flusso Φ del campo elettrostatico E = ...
Determinare gli estremi assoluti della funzione $f(x,y)=2xy$ nel dominio limitato la cui frontiera è l'ellisse di equazione $x^2/8+y^2/18=1$
Per calcolare i minimi e massimi ho calcolato la $f_x=2y$ e la $f_y=2x$, ho imposto le due derivate pari a 0 e ho costruito il sistema per trovare i punti critici e vedere in base all'Hessiano di che tipo sono, ma l'unico punto critico che ne esce è $O(0;0)$ mentre la soluzione del libro è: $minf=-12=f(-2;3)=f(2;-3)$ e ...

Data la successione di funzioni $f_n(x))=(nx)/(1+(3nx)^2)$ determinare l'insieme di convergenza E, la funzione limite, e stabilire che in E la convergenza non è uniforme.
Dire poi se:
a)la successione converge uniformemente in $[-3,3]$
b)la successione converge uniformemente in $R-[1/3,-1/3]$
L'insieme di convergenza mi viene R, la funzione limite 0. Come faccio a capire se è esatta la a) o la b)?

Salve devo risolvere un questito e a questo punto colgo l'occasione per chiarire un argomento.
In generare per scrivere l'equazione di un piano ci servono due vettori indipendenti per determinare la giacitura e un punto; per una retta un vettore per la direzione e un punto.
DOMANDE:
1) Se ho l'equazione di una data retta e voglio scrivere l'equazione di un piano che lo contiene basta prendermi un punto sulla retta il vettore che da la direzione della retta e un vettore indipendente a ...

Ciao a tutti. Ho un problema con la seguente disuguaglianza. Non capisco perché valga.
$ \int_{k\pi}^{(k+1)\pi} \frac{|\cos{t}|}{t}dt \geq \frac{1}{\sqrt{(k+1)\pi}} \int_{k\pi}^{(k+1)\pi}|\cos{t}|dt$.
Inoltre non che qualcuno mi sa dire se esistono delle condizioni che permettono di applicare questo tipo di maggiorazioni? Provo a spiegarmi meglio:
se ho un funzione monotona crescente posso maggiorare l'integrale definito in un dato modo, se la funzione è decrescente in quest altro.

Ragazzi scusate una struttura algebrica per essere un anello, oltre che a godere della sua proprietà deve anche godere della distributività del prodotto rispetto alla somma
che dovrebbe essere questa:
a.(b+c)=(a.b)+(a.c)
confermate??
ossia basta verificare quell'uguaglianza giusto??
no perchè su alcuni libri e anche su wikipedia, ho notato che esiste la distributività a destra e a sinistra di un operazione, ma non capisco io sul libro c ho scritto solo quello come ...

Devo calcolare la somma della seguente serie: [tex]${\displaystyle \sum_{n=3}^{\infty}\frac{5}{\sqrt{2^{n}}}}$[/tex]
Inizio:
[tex]${\displaystyle \sum_{n=3}^{\infty}\frac{5}{\sqrt{2^{n}}}}=5{\displaystyle \sum_{n=3}^{\infty}\frac{1}{\sqrt{2^{n}}}={\displaystyle 5\sum_{n=3}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}}}$[/tex]
Pongo [tex]{\displaystyle \sum_{n=3}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}}}$[/tex] = <span style="color:red">(1)</span><br />
<br />
Ora trascuriamo un attimo questa serie e studiamo invece la serie: [tex]${\displaystyle ...

mi chiedevo: esistono applicazioni continue e biunivoche tra spazi topologici che non sono omeomorfismi? E tra spazi euclidei?

vi pongo una domanda credo semplicissima, ma mi trovo in difficolta; il il solido è il seguente $D={x^2+y^2>=r^2 , x^2+y^2<=z<=1} $ con $r$ parametro, forse non riesco a capire di cosa si tratti perchè è un solido e non il classico dominio. mi date qualche consiglio?
grazie