Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Teorema di Weierstrass:
Sia $f: [a,b] \to RR$ continua , allora $f$ assume massimo e minimo in $[a,b]$
Dimostrazione: posto $M=$ sup ${f(x) : x in[a.b]}$
Allora esiste $ x_n sub [a,b] $ tale che $\lim_{n \to \infty}f(x_n) = M$
Dopo aver dimostrato ciò (attraverso la proprietà dell' estremo superiore)
Per il teorema di Bolzano Weierstrass esiste un' estratta $x_(n_k)$ tale che $\lim_{k \to \infty}(x_(n_k)) = x_0 in [a,b] $
e poichè f è continua segue che $\lim_{k \to \infty}f(x_(n_k)) = f(x_0) $
QUI ARRIVA ...
Il professore ci ha fatto dimostrare i limiti dell'esponenziale a$+infty$ e $-infty$. Per farlo ha dimostrato che il codominio dell'esponenziale è un intervallo con inf=0 e sup=$+infty$.Quindi ci ha dimostrato che l'intervallo è superiormente illimitato.
Per farlo ha supposto per assurdo che non lo sia, e che quindi esista M, numero reale, t.c. $M>(a^n)=(1+(a-1)^n)>=(1+n*(a-1))$, con la disuguaglianza di bernoulli.Poi però ha detto che per n sufficientemente grandi $(1+n*(a-1))$ è ...
ciao
$sign(x^2-x)$
$\lim_{x \to \0}sign(x^2-x)$
se sostutuisco lo 0 ottongo 0-0 che non e una forma indeterminata giusto...e qundi per me quel limite vale 0...
ma in relata il limite e 1 da sistra e -1 da destra
come si fa a capire che il limite non e giusto (senza avere il grafico)
oppure 0-0 e una forma indeterminata????
Carissimi ragazzi, c'è un esercizio di topologia che vorrei condividere con voi-
Provare che l'insieme delle matrici di tipo $ mxn $ sul campo reale si struttura a spazio topologico con una topologia $ T $ .
Il problema è che non riesco a comprendere come si possa strutturare un tale spazio topologico; ho pensato di far riferimento al rango delle matrici, che ne dite? Oppure devo dare per assodato che tale spazio topologico esista? In attesa di risposte, ringrazio per ...
una piccola cosa per iniziare l'anno (che io non sapevo e ho scoperto di recente).
Dal momento che è più importante di quanto uno creda (me ne sto accorgendo ora nell'iniziare a studiare i preamboli della tesi) penso sia quantomeno interessante saperlo (anche se penso sia un argomento noto ai più), anche se non è un risultato difficile.
Consideriamo una successione superadditiva, ovvero t.c. $a_{n+m}\geq a_n+a_m$ per ogni $n,m$ naturali.
Allora la successione ...
Let G be a group in which all but finitely many normalizers of (infinite) non-subnormal subgroups have finite index.
Sarà anche un quesito banale, ma qualcuno mi sà spiegare passo passo come si esegue una sottrazione tra numeri binari (senza usare il complemento a due) come da esempio riportato.
11000-111=10001
A partire dalla cifra meno significativa troviamo 0 meno 1 e viene quindi chiesto un prestito dalla cifra seguente ( che è comunque uno zero) , quindi 0-1, diventa 10-1=1 e OK la prima cifra è calcolata ( l'1 più a sinistra), quello che non capisco è come si calcolano i tre zeri che precedono l'1 più ...
Salve a tutti,sto studiando la dimostrazione della non separabilità di $ l^\infty $ e non la riesco a capire o forse non ho capito prorpio il concetto di seprabilità !
Uno spazio metrico si dice SEPARABILE se contiene un sottoinsieme numerabile che è denso,quindi uno spazio NON lo è se non contiene alcun sottoinsieme numerabile che è denso .
La dimostrazione per $ l^\infty $ considera un sottoinsieme $ K$ di $ l^\infty $ costituito da tutte le successioni in ...
quale è la primitiva della forma differenziale $y/(x+y)^2 dx + 1/(y+1) - x/(x+y)^2 dy $
ciao a tutti. ho qualche problema a comprendere i passaggi della dimostrazione che portano alla derivata della funzione inversa e quindi alla derivata della funzione logaritmo. qualcuno potrebbe spiegarmele? grazie e buona giornata.
questo è un problema che mi è stato posto da un amico, del quale sto cercando da tempo la soluzione.
faccio una minuscola intro, giusto per spiegare due cosette
certamente molti di voi conosceranno il cubo di rubik, puzzle meccanico i cui stati formano un gruppo di permutazioni di circa \(4.3 * 10^{19}\) elementi.
negli standard internazionali, si usa la notazione secondo cui una mossa è una rotazione di \(90^\circ\), \(180^\circ\) o \(270^\circ\) di una faccia. ci sono quindi 18 mosse ...
Si può usare in uno stesso esercizio lo sviluppo di Taylor e i limiti notevoli?
Ad esempio se al numeratore ho $(sinx-tanx)$ posso sviluppare $sinx$ con Taylor e $tanx$ con il limite notevole?
Salve a tutti,
Propongo una serie di quesiti relativi a un paper che ho scritto tempo fa (l'ho uppato su Scribd, spero che la cosa non crei inconvenienti e che sia conforme al regolamento - in caso contrario prego i mods di rimuovere tutto quanto):
http://www.scribd.com/doc/51184856/Patt ... ty-Problem
Per tutte le definizioni (e le locuzioni create “ad hoc” come “permutazioni circolari”) rimando al suddetto paper.
Sono costretto a fare così, per via delle svariate pagine che una descrizione ex-novo dell'argomento ...
Ciao a tutti,
ho un esercizio da risolvere che non riesco a capire, che è il seguente:
"Determinare la direzione di massima crescita, nel punto a fianco indicato, delle seguenti funzioni: "
$ f(x, y) = x^2 e^(-y) $ in $(1, 1)$
Io pensavo che la direzione di massima crescita fosse il vettore gradiente, ma guardando il risultato non pare essere così.
Qualcuno mi saprebbe spiegare?
Grazie in anticipo a tutti
In un esercizio in cui ho un sistema olonomo, mi sono calcolato potenziale e cinetica, e sono giunto alle equazioni di moto (o equazioni di Lagrange); il risultato mi viene ed è quello scritto qui sotto; il mio problema è quando cerco le configurazioni di equilibrio; le prime due sono molto intuitive, la 3° e la 4° vanno cercate con qualche passaggio di calcoli:
io ho ricavato $ s=-6lsinphi $ dall'equazione $ (del U)/(del s)=0 $ , ho sostituito nell'altra equazione e trovo $ 3lsinphi(1+4cosphi)=0 $ ; ...
Posto un risultato astrattamente utile per risolvere alcuni problemi di matematica ricreativa, inerenti a particolari sequenze costruite giustapponendo cifre alla sinistra di altri numeri noti: le c.d. "sequenze concatenate rovesciate".
Nell’ambito della matematica ricreativa sono relativamente note le sequenze di interi create da Florentin Smarandache. Tra le più famose cito quella consecutiva [tex]\ (1,12,123,1234, ... ,123456789,12345678910,...)[/tex], quella circolare [tex]\ ...
Consideriamo i numeri ottenuti aggiungendo 3 ad ogni quadrato intero:
3 + 1 = 4
3 + 4 = 7
3 + 9 = 12
3 + 16 = 19
3 + 25 = 28
........
Se scomponiamo i risultati ottenuti,
non considerando il fattore 2, (e come giustamente Gi8 mi ha fatto notare escludendo anche il fattore 3) otteniamo sempre numeri del tipo 3k + 1, cioè che divisi per 3 danno resto 1.
Per esempio $3 + 16^2 = 259 = 7*37$
7 e 37 sono del tipo 3k + 1.
Qualcuno sa dimostrare questa congettura?
Salve a tutti, mi sto preparando per l'esame di analisi 1 e mi sono imbattuto in questo tipo di euqazioni differenziali:
$ y'' +1/x*y'=2/x^3 $
sapendo che
$ y(-1)=1, y'(-1)=0 $
ebbene, ho provato a studiare sui libri e su internet ma vengono trattate solo equazioni differenziali lineari, a coefficenti costanti e con separazione di variabili.... come si può risolvere questa equazione?? vi sarei grato se mi spiegaste passo passo il metodo risolutivo...
Grazie tante!!!!
Leggendo Goldstein Classical mechanics ho calcolato l'Hamiltoniana di una particella di massa \(m\) e carica \(q\) soggetta alla forza di Lorentz
\[\mathbf{F}=q\left( - \nabla \phi -\frac{\partial \mathbf{A}}{\partial t} + \mathbf{v} \times (\nabla \times \mathbf{A})\right),\]
ovvero
\[H=\sum_{i=1}^3\frac{(p_i-qA_i)^2}{2m}+q\phi.\]
Secondo il libro questa sarebbe l'energia totale della particella. Ma a me non torna. Cosa c'entra quel fattore \(q A_i\) nell'energia cinetica? Io avrei detto ...
Ciao a tutti,
nello studio di un'integrazione per sostituzione mi sono trovato di fronte a ciò:
$t=7x-4 -> dt=7dx -> dx=dt/7$; successivamente $dt/7$ diviene $1/7$
Allora, io ho capito che $dt=7dx$ perchè la derivata di $t$ è $7$ ma poi non capisco perchè $dx=dt/7$...cioè...il 7 da dove vien fuori? ...e poi $dt/7$ non è uguale a $(7dx)/7$? che sarebbe $1dx$ e non $1/7$?
Grazie a tutti!