Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
kotek
Ciao a tutti, ho un esercizio da risolvere che non riesco a capire, che è il seguente: "Determinare la direzione di massima crescita, nel punto a fianco indicato, delle seguenti funzioni: " $ f(x, y) = x^2 e^(-y) $ in $(1, 1)$ Io pensavo che la direzione di massima crescita fosse il vettore gradiente, ma guardando il risultato non pare essere così. Qualcuno mi saprebbe spiegare? Grazie in anticipo a tutti
4
3 gen 2012, 16:30

Crisso1
In un esercizio in cui ho un sistema olonomo, mi sono calcolato potenziale e cinetica, e sono giunto alle equazioni di moto (o equazioni di Lagrange); il risultato mi viene ed è quello scritto qui sotto; il mio problema è quando cerco le configurazioni di equilibrio; le prime due sono molto intuitive, la 3° e la 4° vanno cercate con qualche passaggio di calcoli: io ho ricavato $ s=-6lsinphi $ dall'equazione $ (del U)/(del s)=0 $ , ho sostituito nell'altra equazione e trovo $ 3lsinphi(1+4cosphi)=0 $ ; ...

Studente Anonimo
Posto un risultato astrattamente utile per risolvere alcuni problemi di matematica ricreativa, inerenti a particolari sequenze costruite giustapponendo cifre alla sinistra di altri numeri noti: le c.d. "sequenze concatenate rovesciate". Nell’ambito della matematica ricreativa sono relativamente note le sequenze di interi create da Florentin Smarandache. Tra le più famose cito quella consecutiva [tex]\ (1,12,123,1234, ... ,123456789,12345678910,...)[/tex], quella circolare [tex]\ ...
3
Studente Anonimo
1 gen 2012, 14:52

steven.M
Consideriamo i numeri ottenuti aggiungendo 3 ad ogni quadrato intero: 3 + 1 = 4 3 + 4 = 7 3 + 9 = 12 3 + 16 = 19 3 + 25 = 28 ........ Se scomponiamo i risultati ottenuti, non considerando il fattore 2, (e come giustamente Gi8 mi ha fatto notare escludendo anche il fattore 3) otteniamo sempre numeri del tipo 3k + 1, cioè che divisi per 3 danno resto 1. Per esempio $3 + 16^2 = 259 = 7*37$ 7 e 37 sono del tipo 3k + 1. Qualcuno sa dimostrare questa congettura?

francesco.android6
Salve a tutti, mi sto preparando per l'esame di analisi 1 e mi sono imbattuto in questo tipo di euqazioni differenziali: $ y'' +1/x*y'=2/x^3 $ sapendo che $ y(-1)=1, y'(-1)=0 $ ebbene, ho provato a studiare sui libri e su internet ma vengono trattate solo equazioni differenziali lineari, a coefficenti costanti e con separazione di variabili.... come si può risolvere questa equazione?? vi sarei grato se mi spiegaste passo passo il metodo risolutivo... Grazie tante!!!!

dissonance
Leggendo Goldstein Classical mechanics ho calcolato l'Hamiltoniana di una particella di massa \(m\) e carica \(q\) soggetta alla forza di Lorentz \[\mathbf{F}=q\left( - \nabla \phi -\frac{\partial \mathbf{A}}{\partial t} + \mathbf{v} \times (\nabla \times \mathbf{A})\right),\] ovvero \[H=\sum_{i=1}^3\frac{(p_i-qA_i)^2}{2m}+q\phi.\] Secondo il libro questa sarebbe l'energia totale della particella. Ma a me non torna. Cosa c'entra quel fattore \(q A_i\) nell'energia cinetica? Io avrei detto ...

angelo.digiacomantonio
Ciao a tutti, nello studio di un'integrazione per sostituzione mi sono trovato di fronte a ciò: $t=7x-4 -> dt=7dx -> dx=dt/7$; successivamente $dt/7$ diviene $1/7$ Allora, io ho capito che $dt=7dx$ perchè la derivata di $t$ è $7$ ma poi non capisco perchè $dx=dt/7$...cioè...il 7 da dove vien fuori? ...e poi $dt/7$ non è uguale a $(7dx)/7$? che sarebbe $1dx$ e non $1/7$? Grazie a tutti!

nunziox
${(y'=1/(x^2-1)*sqrt(y-1)),(y(0)=2):}$ quindi $y'=1/(x^2-1)*sqrt(y-1)$ $(y')/sqrt(y-1)=1/(x^2-1)$ integrando: $2sqrt(y-1)=1/2log((1-x)/(x+1))+c$ $y=[1/4log((1-x)/(x+1))+c]^2+1$ segue che $2+c^2=1$ quindi $c=+-1$ $y=[1/4log((1-x)/(x+1))+-1]^2+1$ con $c=+-1$ calcolando con Wolfram Alpha non sembra trovare le stesse soluzioni: http://www.wolframalpha.com/input/?i=y%27%3D1%2F%28x%5E2-1%29*sqrt%28y-1%29%2Cy%280%29%3D2
2
3 gen 2012, 11:28

Slashino1
Ho la matrice $A=((-2,-3,-3),(-1,0,-1),(5,5,6))$ rappresentativa di un certo omomorfismo rispetto entrambe le basi canoniche di $R^3$. Il problema chiede di calcolare la nuova matrice rappresentativa dello stesso omomorfismo rispetto alla base $B=((2,0,0),(1,0,1),(1,3,-1))$ e alla base canonica di $R^3$. Il libro calcola semplicemente le immagini dei vettori della base $B$ tramite $A$ e mettendole in colonna forma la nuova matrice rappresentativa. Qualcuno può spiegarmi il ...

ing.cane
ho i seguenti esercizi: 1) individuare i valori del parametro a per cui la funzione risulta sommabile nell'intervallo [-180°, 180°] : $f= (sen(2x^(1/3)))/|x|^a$ 2)individuare i valori del parametro a per cui la funzione risulta sommabile nell'intervallo [-1, 1] $f=|ln(x+1)|^a$ e non mi vengono proprio idee su come risolverli...
5
3 gen 2012, 09:59

Dino 921
Ciao a tutti.. ho un problema nel capire cosa sono queste successioni estratte..provo a leggere libri e dispense ma, siccome mantengono un linguaggio troppo formale, rinunciano a quella semplicità lessicale che forse mi è necessaria per capire. Qualcuno di voi, che magari è entrato in piena conoscenza dell'argomento, mi saprebbe spiegare (preferibilmente facendo uso di esempi) cosa sono? cioè..io ho provato a darmi una spiegazione. Ho pensato: scrivere $(a_n)_(n in NN) = (2^n)_(n in NN)$ potrebbe significare ...
4
2 gen 2012, 23:52

Dino 921
Salve, sto cercando di dimostrare il teorema fondamentale sul limite delle successioni monotone. Esso è articolato in 3 punti: Ogni successione monotona è regolare. Inoltre: 1) se la successione è crescente, allora il suo limite coincide con il suo elemento superiore; 2) se la successione è decrescente, allora il suo limite coincide con il suo elemento inferiore; 3) se la successione è monotona limitata, allora essa converge. I primi due punti li ho dimostrati senza alcun problema; il terzo ...
2
2 gen 2012, 22:48

Tina Kennard
Ciao ragazzi! Sono una nuova iscritta ma trovo sempre utile questo forum! Sto studiando per l'esame di Analisi Matematica I e vorrei sapere se sto svolgendo bene gli esercizi! Voi come calcolereste la derivata prima di questa funzione? x + 1 / x^2 - 4x + 3 Grazie in anticipo!

Summerwind78
Ciao a tutti Avrei bisogno di un chiarimento per un esercizio di fisica quantistica. Ho un potenziale come quello descritto in figura dove la freccia verde è una delta di Dirac mentre la parte in rosso è un muro di potenziale infinito ho trovato un esercizio svolto che in linea di massima mi è chiaro ma ho qualche dubbio. chiamo con il nome "zona I" la parte in a sinistra della delta di Dirac e con il nome "Zona II" la parte tra la delta di Dirac e il muro di potenziale. il mio ...

brownbetty1
Salve a tutti. Come da titolo, studiando quest'argomento mi è sorto un bel dubbio. Vedendo in giro che l'argomento è spiegato in diversi modi, premetto che per me valore limite è il limite di un estratta \((a_{k_n})\) di \((a_n)\), classe limite l'insieme dei valori limite di \((a_n)\) mentre $maxlim\(a_n)\$ e $minlim\(a_n)\$ sono rispettivamente $SUP$ e $INF$ in $RR$ esteso di tale insieme. Si può dimostrare che: [list=1]1) la classe limite è chiusa ...

Sk_Anonymous
Salve, abbiamo una funzione che ad ogni punto del piano associa un vettore applicato in quel punto, un campo vettoriale insomma, per esempio $(x+y,x+2y)$. Domanda: cosa rappresenta graficamente la derivata parziale della prima componente rispetto ad $y$? C'entra qualcosa il rotore? Grazie per i suggerimenti.

starsuper
SOno alle prese con un esercizio, mi torna tutto ma ho un dubbio. es 1--- $varphi ((sqrt(3),0,0,1),(0,sqrt(3),0,1),(0,0,sqrt(3),1),(-1,-1,-1,-sqrt(3)))$ data questa trasf da $v4(R)->v4(R)$ devo calcolarmi alcune cose, vedi rango nullità im(/varphi) etc... ilmio dubbio è qui, calcolare: $dim((Im(varphi)nn ker(varphi))$. Ecco il mio procedimento che dovrebbe esser giusto. Riscrivo il vettore generico dell'immagine come---> $((sqrt(3)p),(sqrt(3)r),(sqrt(3)z),(-p -r -z))$ $(x1,x2,x3,x4)$ Ogni componente del vettore generico quindi la sostituisco nel ker Ker($varphi$) ...

Rollersitch
Salve ragazzi mi trovo alle prese con un esercizio che a mio avviso è posto male e vi chiedo se riuscite a estrapolarne una soluzione. Un sistema è formato da una sfera di materiale conduttore di raggio $a=20 cm$ e da un guscio sferico concentrico alla sfera di raggio interno $b=30 cm$ e raggio esterno $c=40 cm$. Sulla sfera è posta una carica $q= - 2.0 * 10^(-6) C$. Quale carica deve essere posta sulla superficie esterna del guscio affinchè il potenziale della sfera sia ...

schoggi
Ciao a tutti, innanzitutto Buon Anno! Ho incominciato da poco i limiti di funzioni e ho un dubbio. Per calcolare il limite $lim_(x->1)(x^2 + 2x - 1)$ basta semplicemente mettere 1 al posto del x e vedere che valore assume la funzione o si deve fare qualche altro ragionamento? Grazie mille!
4
3 gen 2012, 10:17

retrocomputer
Vorrei dimostrare la seguente affermazione: Una variabile aleatoria $X$ dotata di densità ha legge simmetrica (cioè tale che $X$ e $-X$ sono isonome) se e solo se la sua densità è una funzione pari. La freccia $\Leftarrow$ l'ho dimostrata provando che $X$ e $-X$ hanno la stessa funzione di ripartizione. Invece per la freccia $\Rightarrow$ farei così: penso che l'obiettivo sia quello di trovare qualcosa ...