Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Ho un piccolo esercizio che non riesco a comprendere in parte..
"Trovare l'espressione analitica della funzione che rappresenta la parte inferiore della parabola di equazione $x+(y-1)^2=0$"
Dunque, ho riproposto l'equazione in funzione di y. E fin qui niente di eccezionale:
$y=1-sqrtx$
Il problema ora è: come cavolo rappresentare "la parte inferiore della parabola"? La risposta a questo esercizio è: $y=1-sqrt(-x)$ ma non capisco il perchè. Qualcuno sa aiutarmi? Grazie!

sto smanettando con Maple e tentando di tracciare il grafico della seguente funzione:
$y=|sqrt(x)-1|$
dunque.. io mi aspettavo la funzione tutta bella disegnata solo nel primo quadrante.. invece a quanto pare la disegna sia nel primo che nel secondo! Ovviamente tuta positiva, ma qualcos anon mi quadra perchè il dominio non rimane x>=0??
Insomma, per definizione del valore assoluto e della radice quadrata non mi capacito del perchè venga disegnata per x negative.. Così ho ...

arcosen di radice quadrata(1 - log^2_1/2(senx)
mi trovo insieme vuoto
voi????

Cosa vuol dire "esprimere la negazione il più internamente possibile" riferito alla frase "non a se solo se B"? Vi ringrazio in anticipo per la spiegazione..


Sempre un piccolo quesito di cinematica: un velocista corre i 100 m piani in 10 s. Si approssimi il suo moto ipotizzando che egli abbia un'accelerazione costante nei primi 16 m e poi una velocità costante nei rimanenti 84. Si determini
A il tempo impiegato per percorrere i primi 16 metri
B il tempo imp. per i rimanenti 84
C il modulo dellìaccelerazione nei primi 16 m
D la velocità finale
Come devo impostarlo?
Io ho posto un sistema eguagliando le leggi orarie...cioè B=16m ...

Sia $f$ una funzione da $R$ in $R$. Dimostrare che l'insieme dei punti in cui la funzione NON è continua può essere espresso come unione numerabile di chiusi.

Stamattina ho fatto la prova scritta di Geometria. Qualcuno vuole svolgerlo per farmi sapere come l'avrebbe risolto e farmi sperare di averlo fatto bene?
(1)
Sia $phi$ l'endomorfismo di $RR^3$ rappresentato nel riferimento standard dalla matrice
$A={(2,1,0),(0,1,0),(0,1,2)]$
a) Determinare una base per gli autospazi di $phi$
b) L'endomorfismo $phi$ è diagonalizzabile? Lo è ortogonalmente?
(2)
Nello spazio euclideo $RR^3$, ...

radice quadrata di (1 + log(arcos(x/(x-1)))) la base del log è (2/pgreco)
il mio risultato è :
-1

qualcuno potrebbe aiutarmi con i limiti di questa funzione:
Y=(logx-1)/(logx+1)
mi occorre trovare gli asintoti.(se mi fate vedere tutti i passaggi plz)

Vorrei risolvere un esercizio che chiede:
Sia $(X,tau)$ uno spazio topologico e siano $B_1$ e $B_2$ due basi di aperti per $X$. $B_1 \cap B_2$ è una base di aperti per $X$?
Con $B_1 \cap B_2$ intende l'insieme degli aperti che appartengono sia alla base $B_1$ che alla base $B_2$?
In questo caso mi sembra immediato rispondere no. Due basi distinte, che tra l'altro potrebbero generare anche topologie ...

Perchè la seguente disequazione:
senx0, tan

MI TROVO IN DIFFICOLTà SU UNA EQUAZIONE DIFFERENZIALE......COME VADO A STUDIARE L'INTEGRALE PARTICOLARE DI QUESTA EQUAZIONE?
Y"+4Y'=1/SIN2X
MI SAPETE DARE UNA MANO.............AIUTO

$RR$ con la topologia euclidea è I contabile? A me sembra di sì... $AA x in RR$ scelgo l'insieme delle palle $I(x,q)$ centrate in $x$ e di raggio $q in QQ$. Dovrebbe andare no?
Inoltre qualcuno può portarmi degli esempi di spazi topologici non I contabili (l'unico esempio che conosco è un generico spazio $X$ con la topologia di Zarinski)?

Qualcuno ha un'idea per questi esercizi?
1) Sia G un gruppo abeliano finito, e per ogni suo elemento d, sia G(d) l'insieme degli elementi x di G tali che xd=0. Se per ogni p primo che divide l'ordine di G, G(p) è ciclico, allora G è ciclico;
2) Se l'ordine di G è m^2 e per ogni p primo che divide m si ha G(p) = Z/pZ X Z/pZ allora G = Z/p^mZ X Z/p^mZ (leggere = come "isomorfo");
dimenticavo: non è detto che gli enunciati siano veri, l'esercizio chiede di dimostrare o confutare i fatti ...

Se un corpo in movimento voglio che percorra una traiettoria parabolica data dalle equazioni cartesiane $y=x^2$, ma con una legge oraria $(x(t),y(t),z(t))$ tale che il corpo abbia velocità costante a modulo unitario, posso "operare" nel seguente modo:
(x')^2*(4*x^2 + 1) = 1
(dx/dt)^2 = 1/(4*x^2 + 1)
dx/dt = 1/sqrt(4*x^2 + 1)
sqrt(4*x^2 + 1)dx = dt .
Così la x e la t sono separate, ma ottengo (integrando) $t(x)$ dunque per ottenere $x(t)$ devo trovare la ...

1)
Posto,$AAx in RR,f(x)=x^4e^(-x^2)-x^2/(1+x^4),$calcolare $f^(18)(0)$
Il secondo forse lo postai ma nessuno diede soluzione,eccolo:
2)
Siano,per $k,r in RR,k,r>0$ arbitratriamente fissati,$2kpi$ ed $r$ rispettivamente il passo ed il raggio dell'elica di equazione:
${(x(t)=rcost),(y(t)=rsint),(z(t)=kt):}<br />
<br />
detta $l$ la lunghezza dell'arco di elica relativo all'intervallo $[0,2pi]$, determinare sotto quali condizioni per $k$ ed $r$ il rapporto tra passo e raggio eguaglia $l$.

Ho svolto uno studio funzione e mi sono bloccato o meglio non so se ho fatto giusto e dimenticato qualcosa oppure ho sbagliato tutto!.
la funzione e: y=ln(1+2sin^2(x))
a me la derivata prima viene y'=4*sin(x)*cos(x)/(1+2*sin^2(x))
la derivata seconda y''=4*cos(2x)*(1+sin^2(x))-2*sin^2(2x)/(1+sin^2(x))^2
per il dominio ho trovato sin(x)=/+-radq-1/2
il simbolo =/ sta per diverso
dalla derivata prima ho ottenuto un minimo relativo in 0 e un massimo relativo in pigreca mezzi.Non capisco come ...
Ciao! Ieri ho dato Analisi 2 e non sono ruscita a finire questo esercizio:
$sum_{n=0}^{\infty} (sqrt( (2n)! ))/(n!) x^n$
Usando il criterio del rapporto si ottiene
$lim_{n \to \infty} sqrt( ((2n+2)!))/sqrt((2n)!) (n!)/((n+1)!) (|x^(n+1)|)/(|x^n|) = lim_{n \to \infty} (sqrt((2n+1)(2n+2)))/(n+1) |x| = 2|x|$
Allora se $|x|>1/2$ la serie non converge
se $|x|<1/2$ la serie converge assolutamente
Mi mancano i 2 casi agli estremi, ovvero x=1/2, x=-1/2.
Qualcuno potrebbe mostrarmi la fine della risoluzione? Grazie!!
Paola

ho questa funzione:
$f(x)=sqrt(1+x)-|x-2|$
di cui devo calcolare max e min relativi/assoluti...
il dominio è $D={x in RR : 1+x>=0}=[-1,+oo)$.
qualcuno mi conferma se max assoluto = -1
minimo relativo = -3/4 ?? grazie..
ps. il mio dubbio principale è risolvere correttamente la
f'(x) = 1/ (2*sqrt(1+x)) - (x-2)/ |X-2|
pongo una volta (x-2) > 0 e un'altra (x-2) < 0 ??
pps. forse mi sono persa sulla razionalizzazione di sqrt(1+x) al denominatore....
Aiutoooo..