Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

ciao a tutti,
Mi potreste consigliare un libro di esercizi di meccanica razionale(facoltà fisica)?Di teoria ho il Goldstein che è anche fornito di esercizi, tuttavia è privo di soluzioni e molti di essi sono molto difficili.Grazie a tutti in anticipo.

Salve, avrei alcuni dubbi sul confronto asintotico tra infinitesimi generici in notazione di landau ( o peano... sarebbero gli "o piccoli" ). Potete correggermi se sbaglio?
1) Un "o piccolo" è un modo di intendere un qualunque termine che tende a 0 più rapidamente del termine scritto tra parentesi. Esempio --> x^5 è un o( x^4 ).
2) Gli "o piccoli" determinano un certo grado di approssimazione nello sviluppo asintotico in forma di taylor. Quindi tecnicamente, più grande è il grado del ...

Sia:
$TT: x+y-z=0$ il piano di equazione
$P=(3,0,-3)$ un punto
i) si rappresenti la retta $s$ passante per $P$ ed ortogonale a $TT$
equazione della retta: $[P appartiene ad $s$]$ cioè $[P-P_o=t*(a,b,c)]$
$a=1$, $b=1$ ,$c=-1$
$x-3=t$
$y=t$
$z+3=-t$
$((1,x-3),(1,y),(-1,z+3))$
risolvo come se fosse una equazione: ...

Salve a tutti.
Spero in una vostra risposta riguardo un mio dubbio in algebra lineare.
Riporto da una lezione di questo sito:
Segmento: dati due punti (distinti) $B = (x_1, y_1)$ e $A = (x_2, y_2)$ , l'equazione parametrica del segmento $AB$ è:
$\{(x = tx_1 + (1-t)x_2),(y = ty_1 + (1-t)y_2):}$ $ t in [0,1] $
Fin qui tutto chiaro.
Ma io vorrei capire, come si determina che per la prima variabile di ogni equazione il parametro è $t$, mentre per il secondo è $(1-t)$, ...


Non riesco a trovare il determinante di questa matrice:
1 0 -2 0
0 1 -1 2
1 0 1 -5
0 1 -1 0
Come faccio a trovarlo?

$F(x,y)=(x+2y)^2$
determinare i massimi e minimi nell'insieme $K={(x,y) t.c. (x^2)/4+(y^2)/3=1}$
Quello che mi aspetto
Guardando la funzione, a prescindere dalla domanda posta, si vede che la funzione non è mai negativa, al limite è zero lungo la retta r $y=-x/2$, dunque i punti di questa retta saranno tutti punti di minimo. Osservo che $K$ non è un'ellisse, quindi mi aspetto ,svolgendo i calcoli, di trovare come soluzione l'intersezione dell'ellisse $K$ con la retta ...

Come si calcola il seguente limite:
limite per n->+00 di $(n!)^2/((2n)!)

$lim_(x->+oo)(2e^x)/(e^x-1)$ ho diviso il sia il numeratore che il denominatore per x; il denominatore cosi' corrisponde ad un limite notevole= loge ma con il numeratore che ci faccio? tende forse a 0?

ciao a tutti!!!
ma se io volessi creare una matrice ad esempio $5xx4$ di rango 2 come dovrei procedere?
io ho pensato che mi creo una matrice di rango 2 ad esempio $A=((1,0),(1,1))$ e poi applico il teorema degli orlati costruendo appunto orlati nulli... può andare bene? o c'è qualche procedimento un po' più sbrigativo? perchè ho notato che così non è proprio semplice come procedimento...
aspetto vostre notizie e vi ringrazio anticipatamente...

sia
$gamma=\{(x=t^3-t),(y=t^2-1):}$
trovare una formua per il calcolo della lunghezza della curva e trovarne un maggiorante e un minorante...
allora la formula della lunghezza mi viene $\int_gamma(sqrt(9t^4-2t^2+1)dt))$
ma per trovare un magg e un min???
per il minorante ho provato a studiare $g(t)=9t^4-2t^2+1$ e ho trovato che ha un minimo in per $t=(1/13)^(1/3)$
dunque un minorante potrebbe essere $(1/13)^(1/3)$?
e per il maggiorante?

Salve ragazzi,
non ho capito bene come faccio in maniera pratica a stabilire se un diagramma è un reticolo oppure no.
Ho letto la seguente definizione di reticolo:
Un insieme parzialmente ordinato $(A, <=)$ si dice reticolo se per ogni $a, b$ di $A$ il sottoinsieme ${a, b}$ di $A$ ammette estremo inferiore ed estremo superiore.
Si pone per comodità:
sup$({a, b}) = a vvv b$
inf$({a, b}) = a ^^^ b$.
Vi propongo due esempi su cui sto ...

Buongiorno cari Chimici,
mi sapreste dare un parere a riguardo di questo microscopio?
http://cgi.ebay.it/ws/eBayISAPI.dll?Vie ... 0470674913
dite che con un olio a immersione si possono vedere cellule, batteri e altro cose di quella dimensione?
Giuseppe

Non capisco quanto letto su una dispensa sul seguente integrale : $\int 1/(1+cos(\theta))^2 d\theta$ dopo alcuni passaggi capiti viene scritto nelle seguente forma
$1/2\int 1/cos(\theta/2)^2 d(tan(\theta/2))=sin\theta/3 (2+cos\theta)/(1+cos\theta)^2$ ma come arriva a questo risultato?? il testo dice integrare per parti ma come?
grazie

Sto fancendo qualche esercizio di ripetizione sui vettori.
Ecco il testo:
Dire che relazione devono avere tra loro due vettori spostamento di moduli rispettivamente $3m$ e $4m$, affinche lo spostamento somma abbia modulo $5m$,$7m$, $1m$
Per i $5m$
l'angolo è a $90°$ quindi: $r=sqrt((3m)^2+(4m)^2))=sqrt(25m^2)=5m$
Per i $7m$:
Vettore spostamento somma dei due vettori: ...

Salve a tutti! Stavo studiando controlli automatici, e non riesco a capire da dove esca fuori la formula per il calcolo dei residui.
Infatti, supponendo una funzione razionale
[tex]F(s)=\frac{N(s)}{D(s)}[/tex]
con $n$ poli semplici, questa può essere scritta come
[tex]F(s)=\sum_{i=1}^{n}\frac{K_i}{(s-p_i)}[/tex]
Ee fin qui ci stiamo. Poi, stando al libro, si ha che
[tex]K_{i}=\left.(s-p_{i})\frac{N(s)}{D(s)}\right|_{s=p_{i}}[/tex]
Questa relazione da dove salta fuori??

Dato che:
Un punto è di frontiera per un certo insieme E se in ogni suo intorno cadono punti di E e punti del complementare di E
e che:
Un punto è di accumulazione per E se in ogni intorno cadono punti di E
mi vien da rispondere di sì, ma non so se ho tralasciato casi particolari.

Ho due rette $r$ ed $s$ in forma parametrica.
per $r$: $x=3+t$
$y=t$
$z=-2t$
per $s$: $x=-1-2t$
$y=-2t$
$z=5+4t$
Devo verificare che sono complanari.
Il libro riporta tra parentesi *vedi gli spazi direttori*
Ma come faccio a vedere gli spazi direttori? C'è una formula apposita?
Perche secondo me dovrei ...

Vorrei chiedere una mano per risolvere il seguente problema:
" Si dimostri che [tex]\mathbb P^2[/tex] è una superficie topologica. Cioè ogni punto di [tex]\mathbb P^2[/tex] ha un intorno omeomorfo ad un aperto di [tex]\mathbb R^2[/tex]. Si provi inoltre che è compatto e connesso."
Prima di iniziare ho una domanda: è indifferente la scelta di [tex]\mathbb P^2( \mathbb{R})[/tex] piuttosto che [tex]\mathbb P^2( \mathbb{C})[/tex] ? Per ora vado avanti senza pormi il problema...
Io ...

sia:
$f(x,y)=sqrt((x/(y-e^x)))$
calcolare il dominio e le curve di livello in 0 e 1...
il dominio vi viene ${(x,y)\inRR,y>e^x,x>=0}$?
a questo punto però:
z=0 e z=1 non appartengono al dominio giusto? quindi le curve di livello non ci sono giusto?