Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve a tutti.
Devo derivare (rispetto ad x) una funzione che mi lascia un po dubbioso.
La funzione in questione è:
$ P(x)=frac{(x/R)^(3/2)}{sqrt{ln((x+R)/R)-x/(x+R)}} $
Con R=const.
Ogni tentativo mi si complica sempre di più. Che trick posso usare?
Grazie.
Salve a tutti, esercitandomi per l'esame mi sono imbattuto in questo problema : Due masse sono collegate da una fune , di massa trascurabile , che scorre su una carrucola anch'essa di massa trascurabile e priva di attrito. La massa di 5 kg viene lasciata cadere a partire dalla quiete. Usando la conservazione dell'energia si determini a) la velocità della massa di 3 kg nell'istante in cui la massa di 5 kg tocca il suolo , b) la massima altezza a cui salirà la massa di 3 kg. Dato che non potete ...
allora vorrei sapere se ho fatto giusto questo esercizio...devo scrivere la serie di Taylor di questa funzione f(x)=$x^3sin(4x)$... e dallo sviluppo noto del seno ho scritto f(x)= $ sum_(n=0)^(oo ) (-1)^n ((4x)^(2n) 4x^4) / ((2n+1)!) $ .
Ora per studuare la convergenza ho fatto L= $ lim_(n -> oo ) (-1)^(n+1)((2n+1)!) / (((2n+3)!)(-1)^n ) $ = $ lim_(n -> oo ) (-1)^n(-1)((2n+1)!) / (((2n+3)!)(-1)^n ) $ = 0 e quindi R=$oo$ , cioè la serie converge per ogni valore di x....ho fatto bene?
Mi trovo a dover risolvere un problema di quantistica, ma non so come fare! Speravo che qualcuno mi potesse dare un indizio, in modo da potermi sbloccare e proseguire da solo.
Abbiamo una particella quantistica di massa \(\displaystyle m \) in una buca di potenziale infinita. Il potenziale è \(\displaystyle 0 \) all'interno dell'intervallo \(\displaystyle ]-L,L[ \) ed infinito altrimenti.
Tralascio alcune domande iniziali alle quali sono riuscito a rispondere.
Dunque il problema chiede, ...
"Si consideri il sistema meccanico di figura 1 con $M=10 Kg,m_1=2 Kg,R=20 cm ed r=(3R)/4=15 cm$.(a) Calcolare il valore $m_2*$ di m_2 che consente al sistema di restare in equilibrio.(b) Se la massa appesa è $m_2=(m2_*)/2$ il sistema meccanico si mette in moto.Calcolare in queste condizioni : (c) le tensioni $T_1 e T_2$ delle due funi;(d) la velocità del blocco $m_1$ quando è sceso di $2 cm$ rispetto alla posizione di equilibrio."
Figura 1:
http://img855.imageshack.us/img855/7626/55194117.jpg
N.B. non è un ...
ciao a tutti sono un pò messo male aiutooooo!!!
questo è un sistema di equazioni differenziali dove ka e kb sono costanti (a e b sono pedici) e u(t) è >0 e costante
dA/dt= - kaA +u(t)
dB/dt= - kbB +KaA
dovrei risoverlo con traformata di laplace e matrici ma non so come procedere
il metodo che ho pensato è questo ma ho bisogno di una conferma o eventuali altri metodi:
con Laplace :
dA/dt + kaA -u(t) = 0
dB/dt= - kbB + kaA
trasformo con Laplace entrambe le equazioni
{sA(s) + ...
ciao a tutti,
avrei un dubbio su questo problema:
Una sbarra di massa trascurabile ruota in un piano verticale attorno ad un suo estremo con velocità
angolare costante. Lungo la sbarra può scorrere con attrito un manicotto di massa m=100 g. Calcolare
i valori massimo e minimo della velocità angolare della sbarra affinché il manicotto permanga per
l’intero giro a distanza l=10 cm dall’asse di rotazione (si assuma un valore ...
ciao, ho un esercizio sul libro di testo che richiede di trovare l' applicazione lineare $ RR^(4) -> RR ^(3) $ associata alla matrice
1 2 0 1
2 -1 2 -1
1 -3 2 -2
la funzione è f((x,y,z,w))=(x+2y+w, 2x-y+2z-w, x-3y+2z-2w )
il problema è la dimensione dell' immagine.
il testo dice che esiste un minore non nullo di ordine 3, all' interno della matrice scritta sopra. Il minore è:
2 0 1
-1 2 -1
-3 2 -2
ma il determinante di questa ...
SalVe a tutti,
sto cercando di ricervere una equazione avente un radicale per me alquanto complesso. Vi mostro ciò che fin ora ho fatto e vi chiedo perfovore di aiutarmi a concludere ed a giungere al risultato.
L'equazione oggetto d'esame è:
\(\displaystyle (((x^(1/4))*x)^(1/5))*x)^(1/6)) = 5^(5/12) \)
Spero il testo sia comprensibile, comunque si tratta di una "radice di radice di radice".
Io ho provato risolvendo così:
\(\displaystyle ...
Teorema: Sia $(M,A)$ una varietà topologica, con $M$ spazio topologico di Hausdorff. Dimostrare che le componenti connesse di $M$ sono esattamente le componenti connesse per archi di $M$.
A lezione abbiamo dimostrato questo teorema in un certo modo. Provando a ridimostrarlo a casa, senza leggere gli appunti, mi è venuta spontanea una via alternativa. Vorrei sapere se è corretta.
Sicuramente una componente connessa per archi è contenuta in ...
Ciao! volevo sapere se qualcuno è in grado di aiutarmi a dimostrare che la proiezione ortogonale non dipende dalla base scelta, proprio non riesco a mostrarlo. Grazie
Ciao, devo sviluppare questa serie di Laurent [tex]$\frac{z^2+1}{(z^3+1)^2}$[/tex] in [tex]$|z|>1$[/tex].
Ho trovato le singolarità e sono [tex]$z=-1$[/tex] e [tex]$z=\frac{1}{2}\pm i\frac{\sqrt{3}}{2}$[/tex].
A questo punto mi sono bloccato, cioè ho scomposto in fratti semplici [tex]$\frac{z^2}{(z^3+1)^2}+\frac{1}{(z^3+1)^2}$[/tex] ed ho pensato di utilizzare la serie binomiale per il primo fratto (avevo pensato alla derivata ma per il fatto che ci sia [tex]$z^{3}$[/tex] non si può applicare giusto? E quindi la serie ...
Salve a tutti..
anche se risulterà una cosa banale non riesco a capire come verificare,tramite la definizione,il limite di una funzione.
In questo esempio $f(x)=(2x^2-x-1)/(x-1) $ e $lim_(x -> 1) f(x)=3$ quindi devo verificare che $ AA $ $epsilon >0 $ $ EE $ $ del >0$ $ t.c.$ $ AA xne1$,con$ 0<|x-1|<del $, si ha $|f(x)-3|<epsilon $ .. io ho risolto la disequazione $|f(x)-3|< epsilon$ trovando come soluzioni $ 1-epsilon/2< x < 1+epsilon/2$.
Il mio problema ...
Un cubo omogeneo e’ poggiato, da fermo, su un piano inclinato. L’inclinazione del piano viene lentamente aumentata, partendo dall’orizzontale ( = 0° ). Per un certo valore di ovviamente il cubo inizia a muoversi, o scivolando o ribaltandosi sul piano. Calcolare per quali valori di s (coeff. di attrito statico) si ha scivolamento o ribaltamento ed a quali angoli inizia il moto.
Ciao a tutti...ho difficoltà a capire come risolvere questi 2 esercizi....
1--Due numeri random X e Y sono indipendenti. Per 0
Ciao , mi sono bloccato nell'affrontare determinati esercizi riguardanti l'applicazioni lineari, il primo é
$F: R_(2)[x] -> R_(2)[x] : P(x)-> P(x) -xP'(x)$ e chiede di vedere se è lineare ,e se lo è trovare una base del nucleo e una dell'immagine. Riguardo i primi due punti non ho problemi è sulla base dell'immagine che mi blocco.. per trovare una base scegliamo 2 polinomi (essendo la dimImF=2,ottenuta con il teo delle dimensioni) tra $x^2 , x, 1 $ e vediamo quali di essi da un valore non nullo e quindi calcoliamo ...
Ciao a tutti ,qualcuno sa spiegarmi che cosa significa questo errore??
grazie !!
E' da tempo che stavo pensando di scrivere un post su questo argomento che, soprattutto nell'ultimo periodo, mi ha affascinato e interessato parecchio.
Intendo dimostrare che il numero di Nepero $e$ è trascendente. In verità, vorrei mostrare che il problema della trascendenza di $e$ non è così difficile da risolvere come può sembrare ad una prima occhiata. Al contrario, bastano pochi strumenti di Analisi I (sostanzialmente: limiti di successioni e il teorema del ...
Ciao a tutti ho un piccolo problemi di elettrostatica.
Ho un condensatore formato da due lastre parallele poste ad una distanza d costante.
Tra le due lastre viene inserito un materiale dielettrico con costante dielettrica $\varepsilon r$ che occupa un superficie pari a $x$.Invece le lastre hanno una superficie pari ad A.
Devo determinare la capacità del condensatore in funzione della $x$, cioè di quanto materiale dielettrico ho tra le due armature.
Io ho pensato ...
Salve!
Anche questo è un esercizio che ha un risultato che sinceramente non mi rassicura più di tanto...
Devo calcolare l'area della superficie $\Sigma={(x,y,z)inRR^3: x^2+y^2=4z^2, 1<=z<=2}$
Applicherei la formula $A(\Sigma)=intint_\Sigma||\phi_u\times\phi_v||dudv$
Inizio con la parametrizzazione:
$\phi:{(x=2ucosv),(y=2usinv),(z=u):}$
$u\in[1,2], v\in[0,2pi]$
Da cui ottengo i vettori tangenti:
$\phi_u=[[2cosv],[2sinv],[1]]$
$\phi_u=[[-2ucosv],[2usinv],[0]]$
Quindi mi calcolo le componenti della normale:
$\vecn_\Sigma=\phi_u\times\phi_v=|(\veci,\vecj,\veck),(2cosv,2sinv,1),(-2usinv,2ucosv,0)|=$
$(-2ucosv)\veci+(-2usinv)\vecj+(4ucos^2v+4usin^2v)\veck$
Quindi mi calcolo la norma:
$||\phi_u\times\phi_v||=sqrt(4u^2cos^2v+4u^2sin^2v+16u^2)=sqrt(20u^2)=2usqrt(5)$
Termino ...