Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Sk_Anonymous
Salve. Avrei un problema con l'esercizio 2 a pagina 1 di questo pdf . L'esercizio è svolto in quest'altro pdf . Leggendo lo svolgimento, in particolare alla fine della pagina 7, vi è scritto che la barra si muove di moto uniformemente accellerato con \( y(t) = y_0 + y'(t) * t + \frac{1}{2} a t^2 \) Ma \( y'(t) \) dovrebbe essere la velocità iniziale, cioè \( y'(0) \), come scritto anche su wikipedia per il moto uniformemente accellerato. Anche perchè dopo viene calcolata la ...

clacla87
ciao a tutti, volevo proporvi questo esercizio. devo trovare i max e min di questa funzione $ e^sqrt((2x-1)/x) $ . la derivata prima che ho calcolato è questa : $ e^(sqrt(2-1/x))/( 2 x^2 sqrt(2-1/x)) $ adesso devo porla maggiore di zero....allora io ho fatto cosi: $ e^(sqrt(2-1/x)) > 0 $ quando $ x=1/2 $ mentre $2 x^2 sqrt(2-1/x) > 0 $ per $ x >1/2 $ quindi ho un minimo ass. in $ x = 1/2 $. ora mi chiedevo è corretto cio che ho fatto? grazie
9
23 feb 2012, 10:21

Sfarla
Ragazzi chi mi aiuta a risolvere questo esercizio? Magari è facile ma non mi vengono buone idee per risolverlo. Ho \(\displaystyle A \) dominio, e \(\displaystyle I \) ideale frazionario di \(\displaystyle A \) (ovvero un \(\displaystyle A- \)sottomodulo finitamente generato di \(\displaystyle \mathbb Q(A) \), campo dei quozienti di \(\displaystyle A \) ). Dimostrare che se \(\displaystyle I \) è invertibile nel monoide degli ideali frazionari (cioè se esiste \(\displaystyle J \) ideale ...

Sk_Anonymous
Salve ragazzi, volevo avere delle informazioni sugli esercizi che mi sono capitati al compito di Fisica 1. 1) Abbiamo n moli di gas perfetto monoatomico che compiono le seguenti trasformazioni: A-B=espansione libera (quindi ho detto che il lavoro ed il calore scambiati sono nulli e la temperatura $T_A=T_B$); B-C=compressione adiabatica (noto il lavoro fatto sul gas e nota la temperatura nello stato $B$, ho calcolato come richiesto la temperatura allo stato ...

gioskr
Salve a tutti, sto affrontando un argomento nuovo circa le serie. Nell'esercizio mi viene data tale serie: $\sum_{n=8}^oo(1/(n^2+13n+42)) $ Da quanto ho capito, per sommare le serie devo ricondurle a una serie nota, magari a una o più serie diverse, guardare la loro convergenza, la ragione e la serie converge alla somma delle serie ottenute. Non son molto sicuro, di questo ragionamento ma è quello che ho capito. In questa serie però mi viene chiesto: " usando la definizione dire se la serie converge e ...
8
22 feb 2012, 19:12

5t4rdu5t
ragazzi ho un problema URGENTE da risolvere!! ho un sistama di congruenza: x=4(mod5) x=2(mod4) x=6(mod9) li ho risolti tutti prima ho fatto i primi due e viene x=14(mod20). Poi ho fatto qst' ultimo con l' utimo del sistema iniziale. Non capisco xk a me viene x=654(mod 180) sto impazzendo. L identità di B del sistema finale è 1=20*(-4)+9*9, poi la moltiplico per 8 perchè dal sistema ottengo 8=9h+20(-k), scelgo come k=72, -h=32. Se ho la congruenza già positiva perchè deve venire 114 (mod180) ...

leoleoleo1
salve, sono uno studente universitario, dopo tanti sforzi sn arrivato all'ultima prova pratica di fisica a un esame, ma sono completamente nel pallone. mi è stato richiesto di realizzare due grafici , uno sulla velocità e uno sull'accelerazione in funzione dello spostamento di un blocco posto su un piano inclinato senza attrito e attaccato ad una molla. io posso decidere la massa del blocco,la costante elastica della molla,la velocità iniziale , l'inclinazione del piano e l'allungamento della ...

DavideGenova1
Ciao, amici! Il mio libro accenna che una $n$-upla, per esempio \(\bf u\), a componenti reali può essere vista come una funzione $u:{1,2,...,n}->RR$ (sic, con $u$ non grassetto). Io avrei pensato piuttosto che il dominio di \(\bf u\) è sì l'insieme degli indici, ma avrei detto che il codominio sia il prodotto cartesiano generalizzato $RR^n$... Sbaglio? Grazie di cuore a tutti!

DavideGenova1
Sapendo che $cos(r sint)=\sum_{n=0}^{oo} (J_n(r)+J_n(-r))cos(nt)$ e $sin(r sint)=\sum_{n=0}^{oo} (J_n(r)-J_n(-r))sin(nt)$ dove r è un numero reale e $J_n(x)=\sum_{k=0}^{oo} (-1)^k/(2^(2k+n)k!(n+k)!) x^(2k+n)$ è la funzione di Bessel di ordine n, dovrei dimostrare che \[\cos(\mu t+r \sin t)=\sum_{n=0}^{\infty} J_n(r)\cos((\mu-n)t)+J_n(-r)\cos((\mu+n)t).\] Dato che mi pare che $\cos(\mu t+r \sin t)=cos(\mu t)cos(r sint)-sin(\mu t)sin(r sint)$ direi che, tenendo presente le due uguaglianze di qui sopra, utilizzando identità trigonometriche: $\cos(\mu t+r \sin t)=\cos(\mu t) \sum_{n=0}^{oo} (J_n(r)+J_n(-r))cos(nt) - sin(\mu t)\sum_{n=0}^{oo} (J_n(r)-J_n(-r))sin(nt)$ $= \sum_{n=0}^{oo} (J_n(r)+J_n(-r)) (cos((\mu+n)t)+cos((\mu-n)t))/2$ $- \sum_{n=0}^{oo} (J_n(r)-J_n(-r)) (cos((\mu-n)t)-cos((\mu+n)t))/2$ $=\sum_{n=0}^{\infty} J_n(r)\cos((\mu+n)t)+J_n(-r)\cos((\mu-n)t)$. Che cosa ne pensate? Mi sarò perso direi in ...

laura1232
Ciao, sono alle prese con questo limite: $ lim_{x -> + infty}frac{ int_x^{x^2}sqrt{t^2+sin t}dt} {x^4+sin x^2} $ secondo me il numeratore tende a 0, per affermare questo ho pensato di applicare il teorema della media per cui $ EE h in (x;x^2) : int_x^{x^2}sqrt{t^2+sin t}dt=frac{1}{x^2-x}cdot(sqrt{h^2+sin h}) $ ovviamente per $x$ grande si ha $x^2>x$ se $x -> infty$ anche $h -> infty$ allora $lim_{{: ( x ->+infty ),( h->+infty ) :}}frac{1}{x^2-x}cdot(sqrt{h^2+sin h})=0$. Ritornando al limite di partenza il numeratore tende a 0, il denominatore a $+infty$, quindi il limite è 0. Qualcuno sa dirmi se ho pensato correttamente oppure se ...
6
23 feb 2012, 09:17

Serxe
Buongiorno, ho un problema con un piccolo esercizio! Determinare i valori del parametri h per i quali le rette del piano euclideo: $r : 2x + y=0$ $r' : x-2y+2=0$ $r'' : 3x-y+h+4=0$ Appartengono allo stesso fascio. Sinceramente non saprei proprio come farlo, ho provato a trovare il fascio che contiene quelle tre rette ma mi sono bloccato quasi subito.. e altre idee non ne ho! Qualcuno che mi aiuta? Grazie mille in anticipo^^ EDIT: Ho avuto una mezza illuminazione Se metto a sistema ...
1
23 feb 2012, 13:02

andrew_m92
Avrei un dubbio per quanto riguarda la teroria delle serie. Non ho ben chiara la differenza tra il confronto e il confronto asintotico... magari qualcuno di voi può spiegarmi qlcs in merito. Quando devo applicare l'uno e quando l'altro? Ad esempio per la serie \(\displaystyle \sum n 10 ^{- \sqrt n} \) quale dei 2 devo utilizzare? Grazie.
7
23 feb 2012, 10:28

markowitz
Il rapporto di verosimiglianza è, può essere interpretato come una probabilità condizionata?
2
22 feb 2012, 15:12

kiarakiara1
ho un es. che dice testualmente: Usando opportunamente le proprietàdella funzione f(x) =tan(x)/x^2+1 ed evitando calcoli inutili, si determini il valore dell’integrale compreso fra pigreco/4 e -pigreco/4 della f(x) dx, dando una adeguata giustificazione alla risposta. il valore di tan(x) in pigreco/4 è 1 quindi in -pigreco/4 -1 ma a parte questo che significa senza calcoli inutili??? kiss

deffo1
Qualcuno saprebbe dimostrarmi perchè la somma di due numeri algebrici è ancora algebrica? Non riesco a trovare la dimostrazione da nessuna parte. Grazie

Dino 921
salve, mi si chiede di calcolare la somma delle seguente serie di funzioni.. $ sum_(n = 0)^(+oo) x^n/((n+2)!) $ Ricordando lo sviluppo di Taylor della funzione $e^x$, si ha (moltiplicando e dividendo la serie data per $x^2$): $ 1/x^2 sum_(n = 0)^(+oo) x^(n+2)/((n+2)!) $ col risultato di aver reso equivalenti l'esponente della $x$ e il denominatore, al fine di poter applicare lo sviluppo di Taylor. ora, io mi aspetterei come risultato: $e^x/x^2$, perchè $e^x$ è la funzione ...
2
23 feb 2012, 01:12

didons1
Ciao a tutti, avrei bisogno di aiuto per risolvere questo problema: 100 g di ghiaccio a 0 °C sono uniti a 200 g di acqua a 55 °C. Calcola la temperatura all'equilibrio. calore fusione ghiaccio 80 cal/g calore specifico acqua 1 cal / g °C Sono alle prime armi e non mi riesce... Grazie! diletta

Amy_F.F.13
Salve a tutti, stavo svolgendo questo esercizio: Determinare gli estremi della funzione: \(\displaystyle \mathit{f(x,y)} = 2((log(x^2-8)+log(y+1))-y +2x\) ho calcolato il dominio che viene \(\displaystyle \{(x,y)\in \mathbb{R}^2 : |x|> \sqrt{8} \vee y>-1 \} \) poi ho calcolato le due derivate prime e le ho poste =0 e vengono: rispetto a x: \(\displaystyle f'(x,y)= \frac{x^2+2x-8}{x^2-8} \) e ponendola =0 mi risulta \(\displaystyle x1=-4 \vee x2=2 \) rispetto a y: \(\displaystyle f'(x,y)= ...
5
22 feb 2012, 18:58

Hiei1
Ciao a tutti ho qualche problema con le funzioni trigonometriche...in particolare non mi è chiaro perchè: 1.$sin^2x+cos^2x=1$ 2.$sen(−x) =−senx$ 3.$cos(−x) = cosx$ 4.$sin(2x) = 2 sin x cos x$ 5.$cos(2x) = cos(2x) − sin(2x) = 1 − 2sin(2x) = 2cos(2x) − 1$ 6.$sin(2x) = (1 − cos(2x))/2$ 7.$cos(2x) = (1 + cos(2 x))/2$ ed infine, posto $t = tan(x/2)$: 8.$sin x =(2t)/(1 + t^2)$ 9.$cos x =(1 − t^2)/(1 + t^2)$ 10.$tan x =(2t)/(1 − t^2)$ cioè...i conti tornano XD però non capisco come ci si arrivi, ovvero, come sia possibile dimostrarlo. ammetto che la trigonometria non è proprio il mio ...
5
23 feb 2012, 11:24

alessanfra
Salve, mi serve un consiglio per acquistare un eserciziario di analisi2, oltre a quello consigliato dalla prof. Io studio ingegneria alla sapienza. Vorrei un eserciziario con problemi DIFFICILI (la prof è molto severa e pretende parecchio,in pochissimi riescono a passare l'esame) però spiegati bene... Che testo mi consigliate? Grazie!
3
21 feb 2012, 17:49