Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve, non sapevo se andava bene questo esercizio:
Trovare nucleo e immagine dell'applicazione lineare $ RR^2->RR^3 $ $ f (e1)= e1+e2-e3 , f (e2)=2e1-2e2-e3 $
La matrice associata mi viene $ ( (1,2) , (1,-2) , (-1,-1) ) $ riducendo con gauss viene $ ( (1,2) , (0,-4) ) $ quindi immagine ha dim 2 e nucleo 1. Una base per immagine e' $ im (f) = [ [1], [0] ] , [ [2] , [-4] ] $ , mentre il nucleo si trova risolvendo l equazione
$ ( (x+2y=0) , (-4y=0) ) $ e viene $ ker (f) = 0v $. C e qualcosa che non mi torna!
Salve a tutti =) Ho bisogno di una dritta(magari un esempio) riguardo la retta tangente a una curva(2variabili). Nel caso del grafico di una funzione,non ho problemi a scrivere la retta tangente,basta calcolare la derivata prima ed il gioco è fatto. Nel caso di una funzione di due variabili,dato un punto Po,come si scrive la retta tangente? Potreste farmi un esempio,anche banale,giusto per capire? come procedere? Grazie mille
Sto svolgendo un esercizio la quale soluzione ufficiale è (aprire in una nuova tab se troncata)
Non mi torna la suddivisione in fratti semplici, che io eseguo in questo modo
[tex]\frac{x^3+1}{x(x-1)^2}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^2}=
\frac{A(x-1)^2+Bx(x-1)+Cx}{x(x-1)^2}=\frac{Ax^2-2Ax+A+Bx^2-Bx+Cx}{x(x-1)^2}[/tex]
$\{(A+B=0),(-2A-B=0),(A=1):}$
$\{(B=-1),(C=3),(A=1):}$
in maniera particolare non riesco a capire da dove salti fuori quell' $1$ quando fa l'elenco dei fratti
Salve a tutti!
Sto provando a fare esercizi sui numeri complessi, ma mi sono bloccato.
Riesco a risolvere i complessi in forma "base"(se si può chiamare così), cioè del tipo \(z^n = w\):
ad esempio --> \(z ^3 = 1 + i\)
Ma mi trovo a dover risolvere cose più complicate come questa:
\((z−2)^3 = −1\)
Diciamo che non so come comportarmi se c'è un coefficiente messo vicino a z come in questo caso.
Qualcuno mi può dare una mano?
Salve, cercando gli asintoti di questa funzione
$y= e^-x log(x^2 -4)$
ho che il dominio è l'intervallo $]-oo, -2[ U ]+2, +oo[$ quindi studio i limiti per la funzione per $x$ che tende a $-2^- , -2^+ , +2^- , +2^+$
ho che questi limiti sono tutti uguali a $-oo$
ma $lim_(x->-2^-)f(x) = lim_(x->-2^+) = -oo$ non significa che $x=-2$ è un asintoto (generico, quindi sia destro che sinistro) della funzione? Perché sul libro mi porta come soluzione solo l'intorno sinistro!
e anche nel caso ...
Sto facendo lo studio di questa funzione --> \(y=ln(x^2-3x+2) \)
Nel calcolo degli asintoti orizzontali ho avuto un problema.
Per x che tende a meno infinito è uguale a più infinito.
$\lim_{x \to - \infty}ln(x^2-3x+2) = +infty$
Il problema nasce se provo a calcolare il limite per x che tende a più infinito.
Infatti ottengo:
$\lim_{x \to + \infty}ln(x^2-3x+2) = ln(+infty-infty)$
Come risolvo questa forma indeterminata all'interno di un logaritmo?
Vedo ogni tanto che gli sviluppi di Taylor sono utilizzati anche per le successioni, per esempio $sin(1/n)= 1/(3!n^3)+o(1/n^3)$. Teoricamente come si giustifica questo? Sempre grazie al teorema ponte? Ho provato a cercare un po' in rete ma non ho trovato quello che cercavo. Potreste fornirmi un link o una breve spiegazione? Grazie mille.
Oggi all'esame c'era questo esercizio:
Si dica se l'insieme $W=((r+s, r+t),(-r-s, 0)) | r,s,t in R$ è un sottospazio dell'insieme $Mat_2,_2(R)$ delle matrici 2x2 a coefficienti in $R$ e in caso affermativo si determini la dimensione di W.
Ho verificato che si tratta effettivamente di un sottospazio, ma non mi sono ricordata come calcolarne la dimensione.
Mi sapete aiutare?
Grazie.
$lim_{n \to \+ infty} ((n^2+2n)/(n^2-3))^(-5n) <br />
<br />
=lim_{n \to \ + infty} e^(-5n*log((n^2+2n)/(n^2-3)))<br />
$
A questo punto io ho calcolato il lim dell'argomento di log il quale risulta tendere a 1 perciò log1=0 e resterebbe
$ lim_{n \to \ + infty} e^(-5n*0) = e^(-oo * 0)$
però da qui non saprei come andare avanti.
Il libro però mi da che il risultato è $ e^-10 $ e fa questo procedimento che non ho ben capito:
$lim_{n \to \ + infty} e^(-5n*log((n^2+2n)/(n^2-3)))$
poi scrivono che dato che l'argomento tende a 1 allora $-5n((n^2+2n)/(n^2-3)-1) = -5n((2n+3)/(n^2-3))= -5n*2/n=-10$
Qualcuno può spiegarmi come hanno fato ad eliminare il $log$? e perchè hanno aggiunto quel ...
Sto svolgendo l'esercizio
la quale soluzione è (aprire immagine in una nuova tab se troncata) :
per la scomposizione in fratti semplici sto proseguendo in tal maniera
[tex]\frac{2x+1}{x(x^2+1)}=\frac{A}{x}+\frac{B}{x^2+1}=\frac{Ax^2+Bx+A}{x(x^2+1)}[/tex]
$\{(A=0),(B=2),(A=1):}$
tuttavia il fattoche $A$ assuma due diversi valori nello stesso sistema, mi fa capire che la strada da me seguita è sbagliata
La tensione misurata ai capi di una batteria può essere maggiore della sua forza elettromotrice? Questa domanda era in un test e la risposta corretta era NO, ma effettivamente, se in una batteria i processi chimici fossero reversibili si potrebbe far fluire la corrente dal polo positivo al polo negativo, e detta r la resistenza interna della batteria, la tensione effettiva misurata sarebbe V=fem+ir, che è maggiore della fem, o mi sbaglio?
Ciao a tutti. Avrei bisogno di un aiuto per risolvere questo esercizio..
In uno spazio di probabilità { $\Omega, P( .), \Sigma$ } si considerino $A_1$, $A_2$, $A_3$ disgiunti a coppie.
1) si esprimano, in funzione di P( $A_1$), P( $A_2$), P( $A_3$) le probabilità P( $A_1$ $\cup$ $A_2$ $\cup$ $A_3$) e P($\bar{A_1 \cup A_2 \cup A_3}$)
2) Si esprima in funzione delle probabilità ...
Salve a tutti!
Svolgendo vecchi esercizi di algebra ho trovato qualche problema per quanto riguarda gli omomorfismi di gruppi; allora l'esercizio mi chiede di trovare tutti gli omomorfismi tra $D_5$ e $ZZ_10$; ora so che $ZZ_10$ possiede 4 elementi di ordine $10$, quelli coprimi con $10$, 4 elementi di ordine $5$ e un solo elemento di ordine $2$, invece in $D_5$, oltre l'identità ci sono le 4 ...
Salve a tutti ragazzi. Sto studiando meccanica quantistica e non riesco proprio a capire il funzionamento dei bracket... qualcuno mi può aiutare? magari anche con qualche esempio semplice e stupido giusto per capirne il funzionamento
Buongiorno ragazzi.....ho un dubbio:
se ho una funzione$f(x,y,z)$ e il mio vincolo è del tipo $E={(x,y,z)in RR^3:x^2+y^2<=1, |z|<=1}$
dovrei impostare la funzione lagrangiana del tipo $ L(x,y,z,\mu,\lambda)= f(x,y,z)- \mu(x^2+y^2-1)-\lambda(??)$ ma come devo comportarmi col valore assoluto ?
E se invece trovo $z<0$ devo comunque metterlo nella lagrangiana (cioà con $\lambda(z-1)$) o mi basta più semplicemente considerare solo i punti con $z<0$ ?
Buongiorno, ho avuto difficoltà nel trovare la seguente funzione inversa
f(x) = 3x^2 + lnx
Nel dominio di x>0
Come si può procedere?
Un oggetto è supposto essere costruito con un materiale 1 avente densità $rho=930 (Kg)/m^3$. Vi è il sospetto di imbroglio e si pensa che, invece, sia stato costruito con una lega fatta col materiale 1 e un materiale 2 avente densità $rho=500 (Kg)/m^3$. Per verificare ciò, l'oggetto viene posto in un secchio pieno d'acqua. Si osserva che il volume immerso è pari al $90%$ del volume immerso che si avrebbe se l'oggetto fosse veramente costituito solo dal materiale 1. Indicare la ...
Determinare la matrice che rappresenta la seguente trasformazione lineare: trasforma $ R^2 $ prima ruotando di $ pi/2 $ in senso antiorario e poi riflettendo rispetto alla retta di equazione $ x+y=0 $ .
Io ho ragionato così per la rotazione:
$ R_(pi/2)( ( x ),( y ) ) = ( ( costheta , -sintheta ),( sintheta , costheta ) ) rArr ( ( 0 , -1 ),( 1 , 0 ) ) $ . Giusto?
Per la riflessione sono un po' in alto mare
Un corpo di massa $m$ che si muove orizzontalmente per mezzo di una forza F, risente della forza viscosa dovuta all'aria $F = -bv$. Conoscendo $b$, qual è la massima velocità che il corpo raggiunge:
- su una strada orizzontale;
- strada in salita inclinata di $theta=10°$ con un vento a favore di $10 (km)/h$;
- strada in discesa inclinata di $theta=10°$ con un vento contrario di $20 (km)/h$
Allora per la velocità limite che raggiunge ...
Scusate la domanda probabilmente stupida e banale ma non riesco a capire.
Trovo ovunque che l'equazione dell'ellisse è $x^2/b^2+y^2/b^2=1$
Oggi facendo un esercizio mi capita $x^2+2y^2=1$ che diventa $x^2/2+y^2=1/2$. Ho pensato che non fosse un ellisse in quanto il termine dopo l'uguale non è 1. Ma mi sbaglio.
Potete spiegarmi il perché? Non è quindi necessario che l'eq sia sempre uguale a 1? E che significa ciò?
Grazie