Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Ciao a tutti!
Mi sono bloccato su un esercizio sulla topologia quoziente, non so come procedere
In $RR^3$, dotato della topologia euclidea, si considerino i dischi:
$D_0 = {(x,y,0) in RR^3 : x^2 + y^2 <= 1}$ e $D_1 = {(x,y,1) in RR^3 : x^2 + y^2 <= 1}$
Sulla loro unione disgiunta, sia $~$ la più piccola relazione di equivalenza per la quale $(x,y,0) ~ (x,y,1) AAy > 0$
Stabilire se lo spazio quoziente $X$ è connesso, compatto, di Hausdorff. Qualcuno può darmi una mano? Grazie mille a tutti!

Ragazzi purtroppo ho bisogno di un ultimo aiutino, ormai sono agli sgoccioli, time is over... ho la funzione $f(x)=x^2$ definita dalla legge f:R---> [0,+infinito[ la risposta esatta è che non è iniettiva mentre è suriettiva, ma perché?
Ogni elemento dei reali non ha una sola immagine dell'intervallo [0,+infinito[ infatti ad esempio i numeri negativi tipo -2 hanno la stessa immagine dei positivi tipo +2 quindi non è iniettiva per questo motivo giusto?
Mentre è suriettiva poiché tutti i ...

Sto effettuando lo studio della funzione
f(x) = x^2 -2 arctan (1/(1-x^2))
Uno dei punti richiesti del problema è "dimostrare che la funzione non si annulla mai"
Come fare?
Devo mettere f(x) > 0?
Che diventerebbe dimostrare
x^2 > 2 arctan (1/(1-x^2))
Devo svolgere un esercizio in cui devo dimostrare che la derivata della funzione $y=4x-2x^2$ è la retta $y=4(1-x)$. Io ho fatto $ lim h tendente a 0 4x-2x^2+h-4x+2x^2/h$
$ lim h tendente a 0 h/h=1$
Cosa ho sbagliato?

Ciao a tutti, non capisco proprio come partire per risolvere questo problema:
"E= (1/2)mv^2 +mat^2 non può essere l'espressione corretta per l'energia meccanica totale di un corpo di massa m, velocità v, accelerazione a al tempo t?"
La cosa che mi sconcerta è la formula mat^2 che non capisco da dove sbuca.

Ho risolto questo limite ma mi sembra in maniera troppo macchinosa, ho come l'impressione che ci sia una strada più facile.
$lim_(x->+oo) (x^2 + 9)/root(2) (x^2 - 9) - x =$
$lim_(x->+oo) (x^2 + 9 -x(root(2) (x^2 - 9)) )/root(2) (x^2 - 9) =$
$lim_(x->+oo) ((x^2)(1- root(2)(1 - 9/x^2) +9/x^2))/(x root(2)(1 - 9/x^2)) =$
$lim_(x->+oo) (x)(-(root(2) (9/x^2) -1)/(-9/x^2) (-9/x^2) +9/x^2)/( root(2)(1 - 9/x^2)) =$
$lim_(x->+oo) (9/x + 9/x)/( root(2)(1 - 9/x^2)) = 0$
Suggerimenti?
PS: ancora non conosco de l'hopital

Buon pomeriggio a tutti,
Sono uno studente della laurea migistrale in fisica e ho un dubbio che non riesco proprio a risolvere. Vagando su siti e forum(compreso questo) non sono riuscito a trovare una chiara spiegazione del perchè di questo passaggio:
Mi ritrovo con un integrale quadruplo sul prodotto
$ Delta [varphi 1'*varphi 2'-varphi 1*varphi 2]*[1+log varphi 1] $
dato che il primo termine $ Delta[...] $ è simmetrico nello scambio $ 1harr 2 $ allora simmetrizza il secondo termine:
$ [1+log varphi 1]=1/2[(1+logvarphi 1+logvarphi 2)+(1+logvarphi 1-logvarphi 2)] $
tenendo solo il termine ...

Se ho una sorgente sferica ad una distanza di $d=5pc$ con un diametro di $D=0,1pc$ trovo che l'angolo sotteso dalla sorgente (essendo l'oggetto molto lontano) è di $D/d=theta=0,02rad$. Se volessi trovare l'angolo solido ho che l'angolo $theta$ deve essere uguale all'angolo $phi$, essendo sferico il corpo. In un disegno
Allora se volessi trovare l'angolo solido sotteso è giusto fare:
$int_(0)^(0,02) int_(0)^(0,02) sintheta d theta dphi=0,000004 $
E' giusto il ragionamento? grazie

Salve, non sapevo se andava bene questo esercizio:
Trovare nucleo e immagine dell'applicazione lineare $ RR^2->RR^3 $ $ f (e1)= e1+e2-e3 , f (e2)=2e1-2e2-e3 $
La matrice associata mi viene $ ( (1,2) , (1,-2) , (-1,-1) ) $ riducendo con gauss viene $ ( (1,2) , (0,-4) ) $ quindi immagine ha dim 2 e nucleo 1. Una base per immagine e' $ im (f) = [ [1], [0] ] , [ [2] , [-4] ] $ , mentre il nucleo si trova risolvendo l equazione
$ ( (x+2y=0) , (-4y=0) ) $ e viene $ ker (f) = 0v $. C e qualcosa che non mi torna!
Salve a tutti =) Ho bisogno di una dritta(magari un esempio) riguardo la retta tangente a una curva(2variabili). Nel caso del grafico di una funzione,non ho problemi a scrivere la retta tangente,basta calcolare la derivata prima ed il gioco è fatto. Nel caso di una funzione di due variabili,dato un punto Po,come si scrive la retta tangente? Potreste farmi un esempio,anche banale,giusto per capire? come procedere? Grazie mille
Sto svolgendo un esercizio la quale soluzione ufficiale è (aprire in una nuova tab se troncata)
Non mi torna la suddivisione in fratti semplici, che io eseguo in questo modo
[tex]\frac{x^3+1}{x(x-1)^2}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^2}=
\frac{A(x-1)^2+Bx(x-1)+Cx}{x(x-1)^2}=\frac{Ax^2-2Ax+A+Bx^2-Bx+Cx}{x(x-1)^2}[/tex]
$\{(A+B=0),(-2A-B=0),(A=1):}$
$\{(B=-1),(C=3),(A=1):}$
in maniera particolare non riesco a capire da dove salti fuori quell' $1$ quando fa l'elenco dei fratti

Salve a tutti!
Sto provando a fare esercizi sui numeri complessi, ma mi sono bloccato.
Riesco a risolvere i complessi in forma "base"(se si può chiamare così), cioè del tipo \(z^n = w\):
ad esempio --> \(z ^3 = 1 + i\)
Ma mi trovo a dover risolvere cose più complicate come questa:
\((z−2)^3 = −1\)
Diciamo che non so come comportarmi se c'è un coefficiente messo vicino a z come in questo caso.
Qualcuno mi può dare una mano?

Salve, cercando gli asintoti di questa funzione
$y= e^-x log(x^2 -4)$
ho che il dominio è l'intervallo $]-oo, -2[ U ]+2, +oo[$ quindi studio i limiti per la funzione per $x$ che tende a $-2^- , -2^+ , +2^- , +2^+$
ho che questi limiti sono tutti uguali a $-oo$
ma $lim_(x->-2^-)f(x) = lim_(x->-2^+) = -oo$ non significa che $x=-2$ è un asintoto (generico, quindi sia destro che sinistro) della funzione? Perché sul libro mi porta come soluzione solo l'intorno sinistro!
e anche nel caso ...

Sto facendo lo studio di questa funzione --> \(y=ln(x^2-3x+2) \)
Nel calcolo degli asintoti orizzontali ho avuto un problema.
Per x che tende a meno infinito è uguale a più infinito.
$\lim_{x \to - \infty}ln(x^2-3x+2) = +infty$
Il problema nasce se provo a calcolare il limite per x che tende a più infinito.
Infatti ottengo:
$\lim_{x \to + \infty}ln(x^2-3x+2) = ln(+infty-infty)$
Come risolvo questa forma indeterminata all'interno di un logaritmo?

Vedo ogni tanto che gli sviluppi di Taylor sono utilizzati anche per le successioni, per esempio $sin(1/n)= 1/(3!n^3)+o(1/n^3)$. Teoricamente come si giustifica questo? Sempre grazie al teorema ponte? Ho provato a cercare un po' in rete ma non ho trovato quello che cercavo. Potreste fornirmi un link o una breve spiegazione? Grazie mille.

Oggi all'esame c'era questo esercizio:
Si dica se l'insieme $W=((r+s, r+t),(-r-s, 0)) | r,s,t in R$ è un sottospazio dell'insieme $Mat_2,_2(R)$ delle matrici 2x2 a coefficienti in $R$ e in caso affermativo si determini la dimensione di W.
Ho verificato che si tratta effettivamente di un sottospazio, ma non mi sono ricordata come calcolarne la dimensione.
Mi sapete aiutare?
Grazie.

$lim_{n \to \+ infty} ((n^2+2n)/(n^2-3))^(-5n) <br />
<br />
=lim_{n \to \ + infty} e^(-5n*log((n^2+2n)/(n^2-3)))<br />
$
A questo punto io ho calcolato il lim dell'argomento di log il quale risulta tendere a 1 perciò log1=0 e resterebbe
$ lim_{n \to \ + infty} e^(-5n*0) = e^(-oo * 0)$
però da qui non saprei come andare avanti.
Il libro però mi da che il risultato è $ e^-10 $ e fa questo procedimento che non ho ben capito:
$lim_{n \to \ + infty} e^(-5n*log((n^2+2n)/(n^2-3)))$
poi scrivono che dato che l'argomento tende a 1 allora $-5n((n^2+2n)/(n^2-3)-1) = -5n((2n+3)/(n^2-3))= -5n*2/n=-10$
Qualcuno può spiegarmi come hanno fato ad eliminare il $log$? e perchè hanno aggiunto quel ...
Sto svolgendo l'esercizio
la quale soluzione è (aprire immagine in una nuova tab se troncata) :
per la scomposizione in fratti semplici sto proseguendo in tal maniera
[tex]\frac{2x+1}{x(x^2+1)}=\frac{A}{x}+\frac{B}{x^2+1}=\frac{Ax^2+Bx+A}{x(x^2+1)}[/tex]
$\{(A=0),(B=2),(A=1):}$
tuttavia il fattoche $A$ assuma due diversi valori nello stesso sistema, mi fa capire che la strada da me seguita è sbagliata

La tensione misurata ai capi di una batteria può essere maggiore della sua forza elettromotrice? Questa domanda era in un test e la risposta corretta era NO, ma effettivamente, se in una batteria i processi chimici fossero reversibili si potrebbe far fluire la corrente dal polo positivo al polo negativo, e detta r la resistenza interna della batteria, la tensione effettiva misurata sarebbe V=fem+ir, che è maggiore della fem, o mi sbaglio?

Ciao a tutti. Avrei bisogno di un aiuto per risolvere questo esercizio..
In uno spazio di probabilità { $\Omega, P( .), \Sigma$ } si considerino $A_1$, $A_2$, $A_3$ disgiunti a coppie.
1) si esprimano, in funzione di P( $A_1$), P( $A_2$), P( $A_3$) le probabilità P( $A_1$ $\cup$ $A_2$ $\cup$ $A_3$) e P($\bar{A_1 \cup A_2 \cup A_3}$)
2) Si esprima in funzione delle probabilità ...