Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve a tutti,
frequento il primo anno di Statistica ed esercitandomi sulle serie numeriche mi sono imbattuto su un tipo che non riesco proprio a comprendere.
La serie in questione è $ sum(n^n/(k^n*n!)) $ per n da 1 all'infinito ovviamente. Il problema è che al variare di k i tradizionali sistemi computazionali mi dicono che una volta diverge (per esempio k=2) e un'altra converge (per esempio k=5). Il problema è che non riesco a trovare un criterio che mi aiuti a trovare una soluzione valida in ...
Buon giorno,
premessa: è da poco che ho iniziato a studiare per l'esame di Fisica. Chiedo umilmente venia per gli errori che porrò di seguito: ma il grande dubbio, mi ha colto di sorpresa, non sapendo come uscirne[in questo istante ], chiedo a voi tutti di darmi un consiglio per cancellare il grande dubbio che mi assale.
Da un esercizio di Meccanica: trovo l'istante t in cui la sfera inizia a rotolare, questa la formula:
$t=2/7*[(Vo+R*w0)/(mu*g)]$
dal testo ho i seguenti valori:
V = 5m/s; R=10cm; ...
Sia $WsubeRR^n$ un sottospazio affine di dimensione $k$. Si provi che $RR^n\\W$ è omotopicamente equivalente a $S^(n−k−1)$.
A meno di una traslazione (che è un omeomorfismo), possiamo supporre che $W$ passi per l’origine e a meno di un automorfismo lineare (ancora un omeomorfismo) possiamo supporre che le $k$ coordinate di $W$ siano le ultime $k$ in $RR^n$. Ma allora $RR^n\\W$ è ...
Buongiorno ragazzi, sto provando a fare il seguente esercizio.
Stampare gli elementi di una matrice NxN secondo un ordinamento a spirale, partendo dalla cornice più esterna e procedendo verso l'interno.
Ho cercato in rete ed ho visto diversi video ed esercizi già fatti ma purtroppo non riesco ancora a capire, spero che qualcuno di voi possa aiutarmi.
Vi posto il mio codice. Ho provato a risolvere l'esercizio con 4 cicli for all'interno di una condizione while.
Sia $X$ uno spazio topologico e sia $x inX$ un punto. Se $X$ è T3, allora $x$ ammette un sistema fondamentale di intorni chiusi.
Sia $U$ un intorno di $x$, allora $EEA$ aperto di $X$ tale che $x inAsubU$, si ha che $X\\A$ è chiuso e non contiene $x$. Siccome $X$ è T3 $EEB,C$ aperti di $X$ tali che $x inB$, ...
Buonasera, cercando di risolvere questo integrale:
$ I = intintint_A(z+1)sinxdxdydz $ dove \( A= \{(x,y,z) \in\Re^3:0\leq z\leq 2,1\leq x^2+y^2\leq 4\} \)
Il dominio $ A $ rappresenta un cilindro "scavato", quindi ho applicato la trasformazione di coordinate cilindriche ottenendo:
$ I=int_(z=0)^(z=2)(z+1)[int_(rho=1)^(rho=2)rho[int_(phi=0)^(phi=2pi)sin(rhocosphi)dphi]drho]dz $
ora, l'idea che ho avuto è quella di operare un cambio di variabile ponendo
$ u=cosphi $
il problema però nasce negli estremi dell'integrale, che diventano entrambi 1 e fanno annullare tutto ...
Salve a tutti, stavo svolgendo un problema di fisica 2 per il quale ho impostato il seguente integrale, mi chiedevo se fosse formalmente corretto:
\[ \int_{0.05}^{0.15} \frac{\mu_0 i}{2 \pi y} x(t) dy = \frac{\mu_0 i}{2 \pi} x(t) \int_{0.05}^{0.15} \frac{1}{y} dy \]
cioè se scrivendo l'integrale si può "inserire" una funzione dipendente da un'altra variabile, nella fattispecie \( x(t) \) e poi portarla fuori dall'integrale, un po come si fa con gli integrali doppi
Ciao Ragazzi
Io ho pensato di risolverla così:
Ho una matrice 2x3 $ ( ( a , b , c ),( d , e , f ) ) $ . Però ho che f(x) = f(x^) = e1 = (1,0) e quindi mi verrebbe da dire che la matrice diventa $ ( ( a , 1 , 1 ),( d , 0 , 0 ) ) $ e quindi avendo 2 variabili libere la dimensione è 2.
Però la risposta corretta è la b) Dim = 3
Grazie!!
Siano $X$ e $Y$ due spazi topologici tali che il prodotto $Xxx Y$ è T4. Si provi che $X$ e $Y$ sono T4.
Facciamo il caso con $X$ (analogamente si dimostra per $Y$).
Siano $F,G$ chiusi disgiunti in $X$. Si ha quindi che $FxxY$ e $GxxY$ sono chiusi disgiunti in $XxxY$, ma allora siccome $Xxx Y$ è T4 $EEA,B$ aperti ...
Buonasera, dati i vertici di una piramide in un sistema di riferimento $ (x, y, z) $
$ A(1,0,1) $ $ B(0,1,1) $ $C(0,0,2)$ $D(0,0,1)$
vorrei calcolare il volume dell'integrale tramite integrazione per strati.
Riesco a visualizzare la piramide, però non riesco a parametrizzare ascissa e ordinata del triangolo che risulta dall'intersezione tra la piramide e il piano z=k al variare del parametro k.
Grazie in anticipo a chiunque mi aiuterà.
Salve ragazzi, ho provato a scrivere una mail ai miei professori ma non ho ricevuto risposta quindi chiedo a voi nella speranza di avere delucidazioni.
Nel programma di Analisi 1 leggo nella sezione relativa alle funzioni continue :
Teorema degli zeri. Teorema di Bolzano.
Corollario del Teorema di Bolzano: ogni funzione continua manda intervalli in
intervalli. Teorema dei valori intermedi.
Purtroppo non ho gli appunti relativi e né l'Acerbi-Buttazzo, né internet mi sono di aiuto.
In ...
Ciao!
Io ho questo dominio su cui fare un integrale triplo: $D = {(x,y,z): x^2 <= z <= 2, y^2 <= z<= 2 }$ dove l'integrale è $ \int int int x^2 + z^2 dxdydz $
La mia idea è stata a fare il cambio di coordinate $ u = \frac{z}{x^2}$ e/o $ v = \frac{z}{y^2} $ ma non giungo a nulla.
Avete suggerimenti su che sistema di coordinate utilizzare?
i) Si determini l'insieme di convergenza di:
$sum_(n=0)^(+oo) (-1)^n 1/(n+1) (2x-2)^(n+1)$
ii) si determini la somma di questa serie di potenze
Mio ragionamento:
Riconduco la serie alla forma tipica delle serie di potenze:
$= sum (-1)^n 1/(n+1) (2)^(n+1) (x-1)^(n+1)$
Sostituisco $k=n+1$, con $k in N$ , quindi cambio l'indice della sommatoria che per $n=0$ parte da $k=0+1$.
Si ottiene così:
$sum_(k=1)^(+oo) (-1)^(k-1) 1/k (2)^k (x-1)^k$
che è una serie di potenze di centro $x_0=1$
Applicando il criterio della radice ...
Sto risolvendo un'esercizio da esame di Fisica 2. Ho una spira quadrata puramente resistiva che si muove con velocità iniziale lungo l'asse x. Per x >= 0 entra in una zona con campo magnetico B che varia con la legge B(x)=ax dove a è una costante.
Nel testo non è specificato ne il verso della corrente che circola sulla spira ne il vero del campo B, qunidi ho ragionato in questo modo:
Se la spira, una volta superato l'asse y, entra in una zona con campo magnetico, questo ...
La mia domanda è molto semplice:
cosa succede, dal punto di vista gravitazionale, durante l'annichilazione?
Mi spiego meglio: sparendo la massa della coppia particella/antiparticella (convertita in energia), la gravità (intesa come curvatura dello spazio/tempo) che fine fa? "sparisce"?
Grazie mille per il tempo che mi dedicherete e mi scuso per la stupidità della domanda.
Siano $n,p inNN$ con $n!=p$. Perchè vale che $AAx inRR^p$ non esiste un aperto di $RR^p$ che contiene $x$ che sia omeomorfo a un aperto di $RR^n$?
L'idea mia era che se esistesse $A$ aperto di $RR^p$ omeomorfo a $B$ aperto di $RR^n$, supposto $n>p$ (analogo $p>n$) se io considero $WsubRR^n$ un sottospazio affine di dimensione $p-1$ allora ...
Buonasera a tutti. Scrivo per avere dei chiarimenti in merito alla risoluzione dell'integrale definito:
$ int_(1)^(9) ln(x+3sqrt(x)) dx $.
Inizialmente l'ho considerato come integrale indefinito da risolvere per parti, ovvero:
$ int_(1)^(9) ln(x+3sqrt(x)) dx = $ $ xln(x+3sqrtx) - int_ () (1+3/(2sqrtx))/(x+3sqrtx)xdx $
Da qui ho pensato di applicare la sostituzione di $ sqrtx $ con t nell'integrale $ int_ () (1+3/(2sqrtx))/(x+3sqrtx)xdx $, per avere:
$ 2 int_ () t^3(1+3/(2t))/(t^2+3t)dt = 2 int_ () (t^3+3/2t^2)/(t^2+3t)dt = 2 int_ () (t^2+3/2t)/(t+3)dt = $ $ 2 [int(t^2)/(t+3)dt + 3/2int t/(t+3) dt] = $ $ t^2-6t-27+3(t-3ln(abs(t+3)) + c $.
Quindi sono ritornato alla variabile di partenza per avere: ...
Ciao a tutti,
Mi rivolgo a voi perché mi sono abbattuto in una dimostrazione e avrei bisogno di un aiuto. Sto cercando di dimostrare il seguente teorema:
"Sia V uno spazio vettoriale su un campo K e sia f : V → V un endomorfismo. Provare che se λ ∈ K è un autovalore di f, allora λ elevato alla 2 è un autovalore di f elevato alla 2."
Vorrei chiedervi se potete aiutarmi a confermare questa dimostrazione o darmi qualche suggerimento su come affrontare il problema.
Ecco come ho iniziato la mia ...