Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve a tutti. Torno alla carica con una nuova serie con parametro da studiare. Stavolta credo di avere le idee un po' più chiare, ma mi rimangono dei dubbi.
Studiare, al variare del parametro reale x, diverso da -2, la convergenza semplice e assoluta della serie:
$\sum_{n=1}^infty (x/(x+2))^n n/arctan(n)$
Ho pensato di procedere nel seguente modo.
1) Ho studiato dove $x/(x+2) >= 0$, che mi dà $(-infty; -2) U [0; +infty)$. In questo intervallo non è necessario studiare la convergenza assoluta, poichè la serie è a termini ...
Un uomo solleva a velocità costante un pianoforte di 100 kg usando un sistema di carrucole. Trascurando l'attrito e assumendo g = 10 m/s^2, stabilire con quale forza l'uomo tira la fune.
750 N
500 N (RISPOSTA!)
1000N
200 N
100
Quali sono le forze in gioco? Ad un estremo la forza peso rivolta verso il basso e la tensione della fune rivolta verso l'alto mentre all'altro capo sono presenti la tensione della fune rivolta verso l'alto e la forza esercitata dall'uomo rivolta verso il basso?
Ciao,
ho una matrice $ A=((cosx,-sinx),(sinx,cosx))$ e mi si chiede di calcolare la matrice $A^n$ per ogni n.
Ho provato a vedere se vi fosse nelle prime 3 potenze una ricorrenza così da andare per induzione. Ma mi vengono matrici spropositate. Deve esserci qualche trick che mi sfugge (salvo errori di calcolo).
Qualcuno saprebbe quale è il trucchetto per trovarla?
Testo dell'esercizio
Una pallina di massa m = 10 g possiede una carica positiva q = 2*10^-5 C ed è appesa a un'estremità di un filo che è vincolato per l'altra estremità a una lastra verticale carica positivamente con densità sigma = 2 * 10^-5 C/m^2. Se pallina è in equilibrio, quanto vale alpha?
Commento
Prima di tutto, vi risulta che Tx = - F elettrica e che Ty = - Fp?
Nel piano verticale $Oxy$ è mobile il sistema articolato costituito da una lamina triangolare equilatera $ABC$ rigida, omogenea, di lato $l$ e massa $m$, e da un asta rigida omogenea $CD$, di lunghezza $l$ e massa $M$. La lamina e il disco sono incernierati nel punto $C$. Il punto medio del lato $AB$ della lamina è fisso in $O$. Oltre al peso agiscono sul sistema ...
Ciao ragazzi , sto svolgendo un'integrale di Analisi I, e arrivo a questo punto:
$ int (t-2)/(t^2+2)dt $
In questo caso io spezzerei l'integrale così:
$ int t/(t^2+2)dt $ , In modo che moltiplicando per 2 avrei numeratore la derivata del denominatore , mentre mi resta più difficile il secondo caso , dove rimarrebbe: $ - int 2/(t^2+2)dt $
Nello svolgimento del compito però , la prima parte viene fatta come ho detto io (con a numeratore la derivata del denominatore), mentre il secondo integrale dovrebbe ...
Sia $C$ una circonferenza che giace su un piano di $RR^3$. Sia $X = RR^3\\C$.
(1) Ricordando che $S^3$ è la compattificazione di Alexandroff di $RR^3$, si provi che $X$ è omeomorfo al complementare in $RR^3$ di una retta $r$ e di un punto $p$ fuori da essa.
(2) Usando il teorema di van Kampen, si determini il gruppo fondamentale di $X$.
Per (1) non ho ben capito come usare il ...
In un esercizio si ha un protone che si muove inizialmente con velocità $v_0$ lungo la retta di
equazione y = x che entra dal foro A ed esce dal foro E (vedi figura). Il campo magnetico è presente solo nel primo quadrante. Chiede di determinare il modulo della velocità $v_0$ affinchè il protone esca dalla regione di campo magnetico passando da E.
Finché la velocità iniziale $v_0$ è diretta solo lungo x non ho alcun problema, è un moto ...
La mia domanda è la seguente:
Supponiamo di avere un piano inclinato di un certo angolo $\theta$ . Sul piano inclinato vi è un corpo puntiforme ad una certa altezza h. Alla base del piano inclinao è posizionata una molla di lunghezza a riposo x.
Sapendo che il piano è liscio, si lascia cadere il corpo lungo il piano inclinato. Si vuole calcolare l'elongazione massima della molla nel momento in cui il corpo raggiungie la molla. Ovvero una volta che il corpo avrà raggiunto la molla ...
Se per esempio deve dimostrare per induzione una $P(N)$ per $nin{0,.....,m}$, allora non cambia nulla, da un punto di vista formale, e posso eseguire gli stessi passaggi che si svolgono usualmente, oppure nel passaggio induttivo $P(n)=>P(n+1)$ deve fare ulteriori considerazioni?
Due guide conduttrici infinite di resistenza trascurabile sono collegate ad un estremo da un generatore di forza elettromotrice che le mantiene alla differenza di potenziale DV. Un tratto di filo conduttore AB di lunghezza b, resistenza R e massa m, può scorrere senza attrito sulle guide. Il circuito è immerso un un campo magnetico B, perpendicolare al piano del circuito e con verso entrante. Il filo è mantenuto in quiete da un fermo.
Si calcolino:
a) La corrente I che circola nella spira e la ...
Ciao, io ho questo quesito a cui faccio fatica a rispondere.
In un esperimento di interferenza di Young un’onda piana di ampiezza $E_0$ incide su uno schermo
con un angolo tale da produrre uno sfasamento relativo $\phi_0 = \pi/2$ tra due sottili fenditure poste a
distanza $d$. Si calcolino:
a) le direzioni $\theta_M$ e $\theta_m$ rispetto all’asse delle fenditure lungo cui si osservano i massimi e i
minimi di interferenza in un piano ortogonale allo ...
Allo specchietto retrovisore di un'auto è appeso un dado di stoffa tramite una cordicella di peso trascurabile. Quando l'auto percorre una curva di raggio 70 m alla velocità di 36 km/h, quanto è ampio l'angolo beta, che la cordicella forma con la verticale?
Risposta corretta: "Circa 8,3°"
..Secondo voi manca il dato sulla massa? Non si può risolvere soltanto con la formula della forza centrifuga? C'è un altro modo?
Dire per quali valori del parametro reale x, diverso da 0, converge:
$\sum_{n=0}^infty ln(1+1/n((x-1)/(x))^(2n)) $
Avrei bisogno di aiuto con questo esercizio. So che è una serie a termini positivi, però non so cosa mi conviene utilizzare per provare a studiarla. Escluderei il criterio del rapporto e della radice. Però anche con l'asintoticità e gli sviluppi di Taylor non mi vengono in mente idee.
Edit: ho pensato di riscrivere la serie in questo modo, secondo voi può essere la strada giusta?
$\sum_{n=0}^infty ln(1+1/n((x-1)/(x))^(2n)) = \sum_{n=0}^infty ln(1+1/n(1-1/x)^(2n))=\sum_{n=0}^infty ln(1+1/n(1-1/x)^x)^(2n/x))= \sum_{n=0}^infty ln (1+1/n(1/(e^(2n/x)))) $
Stavo pensando alla modalità di costruzione degli interi quando mi è venuta in mente questa "cosa": supponiamo che i numeri reali non siano altro che una sequenza infinita di cifre (decimali tanto per farla semplice) in entrambi i versi con un punto decimale da qualche parte (tanto possiamo sempre mettere infiniti zeri davanti e dietro).
Ora è facile (si fa per dire) immaginare un'infinita di cifre a destra del punto decimale ma a sinistra?
Ovvero esiste qualcosa che possiamo chiamare numero ...
Ciao a tutti,
Studiando topologia mi è sorto un dubbio:
$X$ Spazio topologico si dice totalmente sconnesso se ${x}$ è una componente connessa $AAx$.
Il libro dice che uno spazio totalmente sconnesso è T1, e fin qui tutto ok (se ${x}$ è una componente connessa allora è chiuso perchè le componenti connesse sono sempre chiuse), ma poi aggiunge che non per forza è anche T2 (spazio di Hausdorff).
Allora mi chiedo, vale il viceversa? cioè: gli ...
Due oggetti hanno massa e volume diversi l'uno dall'altro. Lasciati cadere dalla stessa altezza, con velocità nulla e in assenza di atmosfera, arrivano al suolo contemporaneamente. Ciò avviene perché:
- i due corpi hanno masse proporzionali ai volumi
- i due corpi hanno masse inversamente proporzionali ai loro volumi
- il corpo con volume maggiore ha una massa minore
- i due corpi hanno lo stesso peso
- la legge di caduta di un corpo nel vuoto dipende solo dalla sua velocità iniziale (RISPOSTA ...
Buon pomeriggio a tutti, in allegato lo sviluppo dell'esercizio che chiedeva di calcolare la potenza reattiva assorbita dall'induttore.
DATI:
$R1=200 \Omega$;$R2= 400 \Omega$; $R3=100 \Omega$; $L=0.4 H$; $C=0.00001F$
$e_1(t)=100 sen(2000t)V$
$j_1(t)=0.3 cos (2000t)A$
Nel dominio dei fasori avrò:
$Z1=200 \Omega$;$Z2= 400 \Omega$; $Z3=100 \Omega$; $ZL=800j$; $ZC=-0.02j$
$e_1=100 e^(-j(\pi/2))=-100j$
$j_1=0.3j$
Sovrapposizione ...
Buon pomeriggio, sto risolvendo il seguente esercizio e prima di procedere con il calcolo delle $\lambda$ vorrei fare un controllo preventivo sulla correttezza del procedimento fatto fino ad ora.
Di seguito il circuito:
$t<0$
$i_L=0.4A$
$V_C=R_1 * J = 16V$
$t -> \infty$
Sovrapposizione 1 - $I_L$ acceso:
$V_L ^{'}=-120i_L$
$i_C ^{'}=-i_L$
Sovrapposizione 2 - ...
Salve ragazzi, avrei bisogno di una mano con un esercizio riguardante gli urti.
L'esercizio in questione è il 6.40 del Mazzoldi Fisica 1, il testo recita:
"Un disco rigido di massa \(\displaystyle M \)e raggio \(\displaystyle R \), è posto in un piano verticale e può ruotare attorno ad un asse fisso orizzontale che offre un momento d'attrito costante \(\displaystyle M_a = 0.6 Nm\). All'istante t=0, mentre il disco ruota con velocità angolare \(\displaystyle w_0 = 6.283 rad/s \) un proiettile ...