Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Salve.
Vorrei, senza svolgere i conti, arrivare intuitivamente a capire perché il mio professore ha detto che questa funzione $f(x): 1/(tsqrt(t-1))$ è sommabile, quindi $inL^1(1,+infty)$, ma $notinL^2(1,+infty)$.
Per quale motivo? Cioè facendo il modulo ed elevando al quadrato otterrei $1/(t^2(t-1))$ per $x\to +infty$ perché non converge?
Grazie a chiunque possa aiutarmi!

Se sto abusando del forum fatemelo sapere, soprattutto ora che a qualcuno devo aver dato fastidio...
$\sum_{n=1}^\infty (-1)^n\frac{\arctan(n)}{n}$
La convergenza semplice son riuscito a dimostrarla con il criterio di Leibniz,
ma non riesco a dimostrare la non convergenza assoluta.
In realtà mi è venuta in mente in'idea proprio ora che sto scrivendo, ma non so se è giusta:
$\sum_{n=1}^\infty \frac{\arctan(n)}{n} > \sum_{n=1}^\infty \frac{0.5}{n} \forall n\geq1$
Il carattere della serie dipende dalla sua coda, quindi
$\sum_{n=1}^\infty \frac{0.5}{n}$ si comporta come $\sum_{n=1}^\infty \frac{1}{n}$ che è la serie ...

Due vettori A e B, lunghi entrambi 10 cm formano con la direzione est del piano cartesiano su cui giacciono angoli di 30° e 60°. Qual è l'angolo alpha che il vettore risultante dalla somma dei vettori A e B forma con il vettore A?
Vettore A
Componente x
cos(30°) = $(x/10)$ -> x = 8.66 cm
Componente y
sin(30°) = $(y/10)$ -> y = 5 cm
Vettore B
Componente x
cos(60°) = $(x/10)$ -> x = 5 cm
Componente y
sin(60°) = $(y/10)$ -> y = 8.66 cm
Vettore risultante A ...

$f(x,y)=e^{x+y}(x+y)$
[*:1aptg28k]Determinare l'insieme di livello di $f$ di quota $0$ e disegnarlo[/*:m:1aptg28k][/list:u:1aptg28k]
sarebbe $A = \{(x,y)\in\mathbb{R^2}:x+y=0\}$ ?? (visto che l'esponenziale non è mai nullo)
Cioè la bisettrice passante per il $II$ e $IV$ quadrante? ($y=-x$)
È cosi semplice?
Grazie!

Buonasera. Studiando da alcune dispense di un corso mi sembra di capire che in generale non è detto che un ideale omogeneo abbia un massimale omogeneo. Sapreste farmi qualche esempio?
Tra l'altro questo fatto diventa vero, sempre secondo le dispense, per anelli positivamente graduati. Confermate? Come si dimostra (se è dimostrabile in breve).
Grazie per l'attenzione, ho perso un sacco di tempo dietro a questo problema negli ultimi giorni

Ciao ragazzi non riesco a risolvere questo esercizio.
End (R^3) è una matrice 3x3 = $ ( ( a , b , c ),( d , e , f ),( g , h , i ) ) $ ; però so che l'immagine di e1 = (1,0,2) => la matrice diventa $ ( ( 1 , b , c),( 0 , e , f ),( 2 , h , i ) ) $
l'altra condizione è che il ker(f) = span (1,0,-1) => possiamo dire che la dimensione del ker(f) = 1;
da qui non so più come procedere e non so come faccio a dire che V non è uno spazio vettoriale.
Grazie per le risposte!!

Buonasera, in un esercizio viene richiesto di disegnare il diagramma di Bode della seguente funzione di trasferimento: $G(s) = 100/s (1+10s)/(1+s)^2$
Questa la mia analisi per il diagramma di ampiezza: $G(s)$ è già in forma di Bode, per cui $g=1, mu=100, mu_(dB)=40$. Zeri: -0.1. Poli: 0, -1 ($mu_d=2$).
Poiché abbiamo uno zero nell'origine si comincia con una pendenza di -20dB/decade e dato che il guadagno è $mu_(dB)=40$, in $omega=1$ dobbiamo passare da 40dB. Visto che abbiamo uno ...

$\sum_{n=1}^\infty\frac{\ln(n+1)-\ln(n)}{n}=\sum_{n=1}^\infty\frac{\ln(\frac{n+1}{n})}{n}$
Criterio del rapporto e della radice non concludono.
Ho provato a sostituire il logaritmo con la radice quadrata, ma non concludo lo stesso.
Rimarrebbe il test dell'integrale, ma spero ci sia un'alternativa più immediata
Grazie
Salve a tutti, mi servirebbe una mano per il seguente quesito:
-)Dalla parte superiore di un condotto verticale di sezione costante S, fuoriesce un getto di un liquido ideale. Come deve essere modificata la sezione del foro di uscita perché il getto di liquido possa raggiungere un'altezza doppia? (Sia S, la nuova sezione e si ipotizzi che la portata volumetrica del getto del liquido si mantenga costante; inoltre si trascuri la resistenza dell'aria)
La risposta è S2=S1/radical2
Grazie in ...
Salve a tutti, qualcuno potrebbe darmi una mano con questo problema?
Pag103 n91 del Nuovo Amaldi 2:
In un esperimento con due fenditure si utilizza una sorgente che emette una sovrapposizione di due diverse lunghezze d’onda, (mi scuso in anticipo ma non so dove inserire i simboli per i dati) Lambda-luce gialla=589 nm e lambda-luce verde incognita. Sullo schermo si osservano due figure di interferenza sovrapposte. In particolare, si nota che la quinta frangia luminosa della luce verde va a ...

in uno spettrometro arrivano deuterio, $ 3_{He $ e trizio. so che a 4GeV/cil tritone perde in media una energia $ <\DeltaE_t>\= 1MeV $ .
per valutare la perdita di energia degli altri nuclei, si può sfruttare quella del tritone così: $ <\DeltaE_d>\=<\DeltaE_t> \frac{(z_d)^2}{(z_t)^2} \frac{\beta_t^2}{\beta_d^2} $ e $ <\DeltaE_(3He)>\=<\DeltaE_t> \frac{(z_(3He))^2}{(z_t)^2} \frac{\beta_t^2}{\beta_(3He)^2} $
ma perchè devo procedere così e non posso calcolare semplicemente $ <\DeltaE_d>\=\frac{(z_d)^2}{\beta_d^2} $ e analogamente per He-3?

Salve a tutti. Mi servirebbe un piccolo check su un conto da me fatto riguardo un'osservazione fatta dal mio professore.
Lui ha affermato che se ho una base ortonormale su uno spazio $V$ di dimensione $n$, allora posto $P_k := P_{e_k} = \frac{\langle e_k, \* \rangle}{||e_k||^2}e_k = \langle e_k, \* \rangle e_k $ si ha che $P_k ^n = P_k$
L'osservazione è morta lì purtroppo e stavo cercando di capire come ci si arrivasse.
Ho capito che ci sono due vie, una più semplice (l'ho scoperta da una dispensa di qualche facoltà di matematica e penso ...
Ciao a tutti, ho un dubbio che riguarda la decomposizione in fratti semplici di una funzione razionale.
Considerando, ad esempio:
$(1)$ $\frac{2x+5}{x^2-1}=\frac{2x+5}{(x+1)(x-1)}=\frac{A}{x+1}+\frac{B}{x-1}$
$(2)$ $\frac{1}{x^3+x}=\frac{1}{x(x^2+1)}=\frac{A}{x}+\frac{Bx+C}{x^2+1}$
Perché nelle frazioni parziali il numeratore deve essere esattamente di un grado in meno rispetto al denominatore? C'è una dimostrazione che mi permetta di verificare ciò?
Ad esempio, nel caso $(2)$ ho notato che se al numeratore della seconda frazione parziale ci fosse una ...
Dimostrare che $AAtin(0,2pi)$ la serie $\sum_{n=1}^(+infty) cos(nt)/n+(isin(nt))/n$ converge.
Io ho fatto cosi: intanto riscrivo $\sum_{n=1}^(+infty) cos(nt)/n+(isin(nt))/n$ come $\sum_{n=1}^(+infty) cos(nt)/n+i\sum_{n=1}^(+infty) sin(nt)/n$. Da qui uso il teorema di Abel-Dirichlet sulle due serie che dice: Siano $a_n$ e $b_n$ due successioni tali che: le somme parziali $s_n$ di $a_n$ sono limitate, ossia $EEM>0$ tale che $|s_n|<=M$ $AAninNN$ dove $s_n=a_1+...+a_n$, $b_n$ tende a $0$ per ...

Vorrei chiedere un aiuto su come dimostrare (dato che non sono in grado e ci ho molto provato) che:
(sia f: V->W e la matrice assiciata a tale a.l.)
- dire: il rango di una matrice (associata) è uguale al n di righe equivale a dire che la funzione è suriettiva.
- dire: il rango della matrice è uguale al n di colonne equivale a dire che la funzione è iniettiva.
Ho capito solo intuitivamente il perché sfruttando il teorema delle dimensioni e che
-- dim(Im(f))=dim(V) => f iniettiva
-- ...
Ciao a tutti io partendo dalla funzione $f_k = \frac{x^k}{k!} $ sono riuscito a fare vedere, tramite il teorema di integrabilità termine a termine su un intervallo $[-a, a]$ che vale la relazione $sinh(a) = \sum_{k=1}^{\infty} \frac{a^k}{k!}$ per $k$ dispari.
Io vorrei usare la stessa strada per dimostrare la relazione $ cosh(a) = \sum_{k=0}^{\infty} \frac{a^k}{k!}$ per $k$ pari.
Tuttavia non so che $f_k$ utilizzare o che passaggio non riesco a completare.
Il mio problema sta nel fatto che quando faccio ...
A lezione abbiamo enunciato il teorema del limite centrale, che afferma che, considerata una successione $X_1, X_2,...,X_n$ di variabili aleatorie indipendenti, tutte con lo stesso valore atteso e la stessa varianza (finita), se $n->+oo$ allora la media campionaria di queste v.a. ha una distribuzione che, standardizzata, si può approssimare con una normale $N(0,1)$.
Siccome il nostro non è un corso particolarmente approfondito, mi sono sempre chiesto che senso abbia sapere ...

Buongiorno,
ho trovato che per ogni trasposizione $(i, j)$ con $i < j$ si ha \(\displaystyle \text{inv}((i, j)) = 2(j - i - 1) + 1 \).
Non capisco come va letta: $(i, j)$ è un'inversione di $\sigma \in S_n$ se $1 \leq i < j \leq n$ e $\sigma(i) > \sigma(j)$. Il numero \(\displaystyle \text{inv}((i, j)) \) di inversioni di $(i, j) \in S_n$ con $i < j$ non dovrebbe essere $0$ se $\sigma(i)<\sigma(j)$ o $1$ se $\sigma(i)>\sigma(j)$?
Potreste per ...

L'esercizio chiedo: determina il coseno dell'angolo formato dai vettori v:i-j+2k e u:i-j-4k
Il risultato è cos=-√3/3
Io provo a risolvere l'esercizio facendo u x v/|u|×|v| ma il risultato verrebbe -6/√108
Qualcuno mi saprebbe aiutare?

Ciao a tutti, ho la seguente domanda: se ho due basi, B={(0,1,1),(1,01,),(1,1,0)} e B’={(1,0,0),(1,1,0),(1,1,1)} e il vettore P=(1,2,3), qual è la differenza della matrice cambio di base da B a B’ e quella di cambio di coordinate? E come le calcolo?
Grazie mille