Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Angus1956
Si consideri il quadrato chiuso $X = [0, 1] × [0, 1]subRR^2$ con la relazione di equivalenza $∼$ definita come: $(x_1, y_1) ∼ (x_2, y_2) ⇔ (x_1, y_1) = (x_2, y_2)$ o $({x_1, x_2} = {0, 1} e y_1 + y_2 = 1).$ Lo spazio topologico quoziente $X_(/∼$ `e detto nastro di Mobius. Si provi che il nastro di Mobius non è omeomorfo a $S^1xx[0,1]$. Intanto lascio una foto del nastro di Mobius: Osservando le proprietà topologiche del nastro di Mobius e di $S^1xx[0,1]$ ho notato che sono entrambi compatti,T2,connessi per ...
36
19 mar 2023, 01:38

carolapatr
Usiamo un esercizio per fugare un dubbio. Gabriele deve riordinare la sua stanza. Cinque oggetti sono sparsi sul pavimento e Gabriele deve rimetterli al loro posto. Le azioni che deve compiere sono: - Sollevare un libro di massa di 500 g su uno scaffale alto 1.5 m W = F * s = 0.5 *1.5 = 7.5 J - Spostare di 2 metri una cassapanca di massa 10 kg e portarla sotto alla finestra Le forze di circostanza sono la forza peso rivolta verso il basso, la normale rivolta verso l'alto (immagino che per ...

carolapatr
Trascurando l'attrito, quanto lavoro bisogna compiere per caricare sul furgone un pacco di 120 kg utilizzando un asse inclinato lungo 3,5 m? Risposta: 1.4 kJ A una prima occhiata mi era sembrato un problema banale persino per me, ora mi rendo conto di non saperne uscire. Non ho a disposizione la velocità, mi sembra di non poter ricavare nessuna forza se non quella peso, non ho angoli ma solo l'ipotenusa di un triangolo rettangolo. Potreste darmi un suggerimento? Non so che mano darmi, davvero

carolapatr
Testo Un ascensore scende verso il basso con accelerazione pari a 1/5 dell'accelerazione di gravità terrestre. Che valore di massa indicherebbe una bilancia pesapersone, posizionata sul pavimento dell'ascensore se vi stesse in piedi un ragazzo di 60 kg? Tentativo di risoluzione Sto avendo difficoltà a strutturare il problema. Ho pensato di scrivere $Fp - Fapparente = m*a$ $m*g - Fa = m*a$ $(60*9.81)$ - Fa = m*$(1/5*9.81)$ Sto per certo sbagliando qualcosa perché i dati sembrano ...

Angus1956
Sia $X$ un insieme qualsiasi. Si provi che esiste una topologia $\tau$ su $X$ tale che lo spazio topologico $(X,\tau)$ è compatto e T2. Sia $x inX$, poniamo $Y=X\\{x}$ e consideriamo lo spazio topologico $(Y,\tau_D)$ (dove $\tau_D$ è la topologia discreta su $Y$). Poniamo $A_{infty}={AsubeX|x inA, X\\A$ è chiuso e compatto in $Y}$. Definiamo la topologia $\hat \tau =\tau_DuuA_{infty}$. Lo spazio topologico ...
5
25 mag 2023, 23:05

jontao
Determinare tutti gli omomorfismi $\phi: \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{Z}_2 $. Per il primo teorema di omomorfismo $\frac{|\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2|}{|\ker_{\phi}| }= |Im_{\phi}|$ 1) $|Im_{\phi}| = 1$ allora $|\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2| = |ker_{\phi}|$ quindi $\phi(a,b,c) = [0] <br /> \forall (a,b,c) \in \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ 2)$|Im_{\phi}| = 2$ allora $|ker_{\phi}| = 8$... come posso continuare?

Giacomo M.
Salve a tutti, frequento il primo anno di Statistica ed esercitandomi sulle serie numeriche mi sono imbattuto su un tipo che non riesco proprio a comprendere. La serie in questione è $ sum(n^n/(k^n*n!)) $ per n da 1 all'infinito ovviamente. Il problema è che al variare di k i tradizionali sistemi computazionali mi dicono che una volta diverge (per esempio k=2) e un'altra converge (per esempio k=5). Il problema è che non riesco a trovare un criterio che mi aiuti a trovare una soluzione valida in ...
5
27 mag 2023, 17:11

lmontella
Buon giorno, premessa: è da poco che ho iniziato a studiare per l'esame di Fisica. Chiedo umilmente venia per gli errori che porrò di seguito: ma il grande dubbio, mi ha colto di sorpresa, non sapendo come uscirne[in questo istante ], chiedo a voi tutti di darmi un consiglio per cancellare il grande dubbio che mi assale. Da un esercizio di Meccanica: trovo l'istante t in cui la sfera inizia a rotolare, questa la formula: $t=2/7*[(Vo+R*w0)/(mu*g)]$ dal testo ho i seguenti valori: V = 5m/s; R=10cm; ...

Angus1956
Sia $WsubeRR^n$ un sottospazio affine di dimensione $k$. Si provi che $RR^n\\W$ è omotopicamente equivalente a $S^(n−k−1)$. A meno di una traslazione (che è un omeomorfismo), possiamo supporre che $W$ passi per l’origine e a meno di un automorfismo lineare (ancora un omeomorfismo) possiamo supporre che le $k$ coordinate di $W$ siano le ultime $k$ in $RR^n$. Ma allora $RR^n\\W$ è ...
2
27 mag 2023, 23:11

Quasar3.14
Buongiorno ragazzi, sto provando a fare il seguente esercizio. Stampare gli elementi di una matrice NxN secondo un ordinamento a spirale, partendo dalla cornice più esterna e procedendo verso l'interno. Ho cercato in rete ed ho visto diversi video ed esercizi già fatti ma purtroppo non riesco ancora a capire, spero che qualcuno di voi possa aiutarmi. Vi posto il mio codice. Ho provato a risolvere l'esercizio con 4 cicli for all'interno di una condizione while.
4
24 mag 2023, 19:44

Angus1956
Sia $X$ uno spazio topologico e sia $x inX$ un punto. Se $X$ è T3, allora $x$ ammette un sistema fondamentale di intorni chiusi. Sia $U$ un intorno di $x$, allora $EEA$ aperto di $X$ tale che $x inAsubU$, si ha che $X\\A$ è chiuso e non contiene $x$. Siccome $X$ è T3 $EEB,C$ aperti di $X$ tali che $x inB$, ...
2
26 mag 2023, 17:35

missu00
Buonasera, cercando di risolvere questo integrale: $ I = intintint_A(z+1)sinxdxdydz $ dove \( A= \{(x,y,z) \in\Re^3:0\leq z\leq 2,1\leq x^2+y^2\leq 4\} \) Il dominio $ A $ rappresenta un cilindro "scavato", quindi ho applicato la trasformazione di coordinate cilindriche ottenendo: $ I=int_(z=0)^(z=2)(z+1)[int_(rho=1)^(rho=2)rho[int_(phi=0)^(phi=2pi)sin(rhocosphi)dphi]drho]dz $ ora, l'idea che ho avuto è quella di operare un cambio di variabile ponendo $ u=cosphi $ il problema però nasce negli estremi dell'integrale, che diventano entrambi 1 e fanno annullare tutto ...
2
27 mag 2023, 15:47

demda
Salve a tutti, stavo svolgendo un problema di fisica 2 per il quale ho impostato il seguente integrale, mi chiedevo se fosse formalmente corretto: \[ \int_{0.05}^{0.15} \frac{\mu_0 i}{2 \pi y} x(t) dy = \frac{\mu_0 i}{2 \pi} x(t) \int_{0.05}^{0.15} \frac{1}{y} dy \] cioè se scrivendo l'integrale si può "inserire" una funzione dipendente da un'altra variabile, nella fattispecie \( x(t) \) e poi portarla fuori dall'integrale, un po come si fa con gli integrali doppi
3
26 mag 2023, 22:45

darienzo007
Ciao Ragazzi Io ho pensato di risolverla così: Ho una matrice 2x3 $ ( ( a , b , c ),( d , e , f ) ) $ . Però ho che f(x) = f(x^) = e1 = (1,0) e quindi mi verrebbe da dire che la matrice diventa $ ( ( a , 1 , 1 ),( d , 0 , 0 ) ) $ e quindi avendo 2 variabili libere la dimensione è 2. Però la risposta corretta è la b) Dim = 3 Grazie!!

Angus1956
Siano $X$ e $Y$ due spazi topologici tali che il prodotto $Xxx Y$ è T4. Si provi che $X$ e $Y$ sono T4. Facciamo il caso con $X$ (analogamente si dimostra per $Y$). Siano $F,G$ chiusi disgiunti in $X$. Si ha quindi che $FxxY$ e $GxxY$ sono chiusi disgiunti in $XxxY$, ma allora siccome $Xxx Y$ è T4 $EEA,B$ aperti ...
19
5 apr 2023, 00:09

missu00
Buonasera, dati i vertici di una piramide in un sistema di riferimento $ (x, y, z) $ $ A(1,0,1) $ $ B(0,1,1) $ $C(0,0,2)$ $D(0,0,1)$ vorrei calcolare il volume dell'integrale tramite integrazione per strati. Riesco a visualizzare la piramide, però non riesco a parametrizzare ascissa e ordinata del triangolo che risulta dall'intersezione tra la piramide e il piano z=k al variare del parametro k. Grazie in anticipo a chiunque mi aiuterà.
2
26 mag 2023, 13:43

dattolico_007
Salve ragazzi, ho provato a scrivere una mail ai miei professori ma non ho ricevuto risposta quindi chiedo a voi nella speranza di avere delucidazioni. Nel programma di Analisi 1 leggo nella sezione relativa alle funzioni continue : Teorema degli zeri. Teorema di Bolzano. Corollario del Teorema di Bolzano: ogni funzione continua manda intervalli in intervalli. Teorema dei valori intermedi. Purtroppo non ho gli appunti relativi e né l'Acerbi-Buttazzo, né internet mi sono di aiuto. In ...

alby09090909
Ciao! Io ho questo dominio su cui fare un integrale triplo: $D = {(x,y,z): x^2 <= z <= 2, y^2 <= z<= 2 }$ dove l'integrale è $ \int int int x^2 + z^2 dxdydz $ La mia idea è stata a fare il cambio di coordinate $ u = \frac{z}{x^2}$ e/o $ v = \frac{z}{y^2} $ ma non giungo a nulla. Avete suggerimenti su che sistema di coordinate utilizzare?

Bianchetto05
Buongiorno a tutti, sto risolvendo il seguente esercizio ma ho sbagliato qualcosa nella SVE perchè al calcolo delle $\lambda$ non ottengo due valori negativi. Potete aiutarmi a capire dove sbaglio? Grazie
22
24 mag 2023, 11:41

CallistoBello
i) Si determini l'insieme di convergenza di: $sum_(n=0)^(+oo) (-1)^n 1/(n+1) (2x-2)^(n+1)$ ii) si determini la somma di questa serie di potenze Mio ragionamento: Riconduco la serie alla forma tipica delle serie di potenze: $= sum (-1)^n 1/(n+1) (2)^(n+1) (x-1)^(n+1)$ Sostituisco $k=n+1$, con $k in N$ , quindi cambio l'indice della sommatoria che per $n=0$ parte da $k=0+1$. Si ottiene così: $sum_(k=1)^(+oo) (-1)^(k-1) 1/k (2)^k (x-1)^k$ che è una serie di potenze di centro $x_0=1$ Applicando il criterio della radice ...