Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Sia $F$ un campo , ed $p(x)$ un polinomio irriducibile di grado $n$ a coefficienti in $F$, ha senso domandarsi quale sia il numero minimo di radici da aggiungere al campo base $F$ affinché si raggiunga il campo di spezzamento $E$ di tale polinomio? Esiste una correlazione tra tale numero ed il grado dell'estensione $E//F$?
Ad esempio se il polinomio ha grado $n=2$ sarà sufficiente aggiungere ...
Stavo studiando la definizione di massimo e minimo limite e mi sono sorti dei dubbi sul modo in cui viene costruita. Vi scrivo di seguito il tutto.
Sia $(a_n)$ una successioni di numeri reali limitata superiormente. Poniamo $\forall k \in N, A_k ={a_n|n>=k}$.
Risulta che $A_0 \sup A_1 \sup A_2 ... \sup A_k$
e che $\forall k \in N A_k$ è limitato superiormente essendo (a_n) limitata superiormente.
Per il teorema di esistenza dell'estremo superiore $\exists Sup A_k \in R \forall k \in N$.
Poniamo $\forall k in N L_k =SupA_k$
Osserviamo che la successione ...
Salve a tutti, come risolvo questo esercizio?
Grazie a chi mi aiuterà
Salve a tutti, come risolvo questo esercizio?
Grazie a chi mi aiuterà

.
Ciao ragazzi vorrei sapere se il mio procedimento risolutivo è corretto.
La riflessione di f(X) = AX + C dove A è la riflessione rispetto all'asse y (x = 0) => A = $ ( ( -1 , 0 ),( 0 , 1 ) ) $ ;
mentre C indica la traslazione ed essendo che la retta x=1 è spostata verso destra di 1 rispetto l'asse y => il vettore traslazione sarà C = (2,0). è corretto?
Poi vorrei sapere come determinare "A" perchè io l'ho scritta in quel modo in quanto è la matrice di riflessione rispetto un'asse ...

Un fotone di lunghezza d'onda 0,066 À urta contro un elettrone in quiete e viene diffuso con un angolo di 60°. Calcola la lunghezza d'onda del fotone diffuso e la quantità di moto dell’elettrone dopo l'urto.
[0,078 À; 9,4 - 10 kg - m/s]
Salve a tutti vi propongo la mia risoluzione del problema perchè il risultato non torna precisamente:
allora prima di tutto ho portato la lunghezza d'onda incidente in m e mi viene $6,6*10^-12$m
poi ho trovato la variazione della lunghezza d'onda del ...

Buongiorno, non so se è la sezione giusta, nel caso spostate.
Sto provando a verificare che $forall x , y \ in RR$ in particolare $yne0$ allora si ha $ |frac{x}{y}|=frac{|x|}{|y|}$.
Se $x ge 0$ e $y>0$ allora $frac{x}{y} ge 0 to |frac{x}{y}|=frac{x}{y}=frac{|x|}{|y|}$
Se $x ge 0$ e $y<0$ allora $frac{x}{y} le 0 to |frac{x}{y}|=-frac{x}{y}=???$
Qual'è il significato di $-frac{x}{y}$, questo $frac{-x}{y}$ oppure $frac{x}{-y}$?
Mi sono dato una mezza risposta, cioè se considero un numero reale ...
Salve a tutti.
Sto risolvendo questo esercizio:
in cui si chiede di calcolare la potenza dissipata sul condensatore.
Ho deciso di risolvere con Thevenin. La mia domanda è: una volta tolto il condensatore e calcolata l'impedenza equivalente parallelo tra resistore da 1Ohm e induttore, la corrente $ I1 $ "svanirebbe" quindi il generatore pilotato diventerebbe un cc giusto?

Ho un problema con lo studio del comportamento della seguente serie:
$\sum_{n=2}^{\infty} \frac{1}{sqrt{n}log(n^3))$
La soluzione sarebbe osservare che $logn = o(sqrt{n})$ per n che tende a infinito e perciò avere che $sqrt{n}log(n^3)=3sqrt{n}logn=o(n)$.
A questo punto si osserva semplicemente che $ 1/n =o(\frac{1}{sqrt(n)log(n^3)})$ e dato che la serie di 1/n diverge, per il criterio del confronto asintotico anche la serie di partenza diverge.
Ora, riflettendo anche su altri esercizi dove si considerava il logn un o piccolo di altre potenze di n, dove ...
Buongiorno a tutti, ho un dubbio sulla formula della proporzione campionaria. La proporzione campionaria è una binomiale, giusto? È anche un caso particolare di media campionaria, e siccome la varianza di quest'ultima è $(sigma)^2/n$, la varianza della proporzione campionaria avrà una forma simile.
Ora, però, sappiamo che la varianza di una binomiale è data da $np(1-p)$; quindi, la proporzione campionaria, non dovrebbe avere varianza $[np(1-p)]/n = p(1-p)$?
So invece che la varianza ...

Salve, ho questo esercizio del quale mi è stata proposta una soluzione che vorrei verificare.
" Si consideri il segnale $X(t)=rect(\frac{t}{2A})$ , dove $A$ è una variabile aleatoria che può assumere ciascuno tra i valori $2,4,8$ con probabilità $\frac{1}{3}$ ed il rettangolo è definito come $$ rect(\frac{t}{2A})= \begin{cases}
1 , \text{se } |t| \leq A ;
\newline
0 , \text{altrimenti}
\end{cases} $$
Di $X(t)$ calcolare:
1) La pmf ...

Ciao a tutti, questo è il mio primo post sul forum. Inauguro la mia iscrizione con una domanda probabilmente banale, ma sulla cui risposta ho dei dubbi. Sto studiando per l'esame di Fisica I, più precisamente la cinematica di un punto materiale. Il mio professore, nel moto unidimensionale, definisce la "velocità scalare media" come il rapporto tra una distanza percorsa e l'intervallo di tempo impiegato a percorrerla (distanza/Δt), per distinguerla dalla "velocità media" che è il rapporto tra ...


Ciao a tutti,
Ho creato un visualizzatore dati in wxpython.
Ho chiamato la classe, Frame suddiviso in Panel, per la visualizzazione dei dati del file iniziale (Network Padre).
Vorrei richiamare la stessa classe per il Giant Component.
Se richiamo la classe come "SubFrame().Show()" non funziona perchè, credo, precedentemente chiamata, allo stesso modo e senza problemi.
Non vorrei chiudere il Frame del Network Padre per poter così confrontare i dati con quelli ottenuti dal Giant Component, ...
Salve, avrei bisogno di aiuto nella compresione di questa proposizione:
Sia $(a_n)_(n\inN)$ una successione di numeri reali tale che:
$\forall n \in N, a_n!=0$
$\exists lim a_n=a \in R , a!=0$
allora
$\exists lim 1/a_n = 1/a$
La dimostrazione procede così:
Valutiamo $1/a_n -1/a = (a-a_n)/(a_n*a) = 1/(a*a_n) *(a-a_n)$
Poiché esiste il limite di $a_n$ ed è in R allora $(a_n-a)_(n\in N)$ è infinitesima
Inoltre poiché esiste il limite di a_n si ha che $(1/a_n)_(n \in N)$ è limitata.
Questa è la prima cosa che non ho capito. Come deduce che ...



Buongiorno,
premetto che sono nuovo in questo forum quindi mi scuso in anticipo per eventuali errori.
Mi sono bloccato da diverso tempo sul questo problema, che mi pare semplice, senza capire cosa sto sbagliando.
Un corpo rigido è formato da tre asticelle sottili identiche di lunghezza L =0,600 m, unite fra loro in modo da assumere una forma ad H (si veda immagine allegata). L'insieme è libero di ruotare attorno a un asse orizzontale fisso, che coincide con una delle gambe ...

Salve a tutti, sto incontrando alcuni problemi nello studio degli operatori di proiezione.
Dato uno spazio di dimensione finita $n$, su cui definisco un prodotto scalare (come da convenzione in fisica richiedo che linearità nella seconda variabile e antilinearità nella prima).
Le dispense di Nino Zanghì affermano che se $u,v$ sono vettori allora definisco la proiezione di $v$ su $u$ come
$ \frac{\langle u,v \rangle}{||u||}$ e da qui posso definire ...