Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve a tutti, mi servirebbe una mano per il seguente quesito:
-)Dalla parte superiore di un condotto verticale di sezione costante S, fuoriesce un getto di un liquido ideale. Come deve essere modificata la sezione del foro di uscita perché il getto di liquido possa raggiungere un'altezza doppia? (Sia S, la nuova sezione e si ipotizzi che la portata volumetrica del getto del liquido si mantenga costante; inoltre si trascuri la resistenza dell'aria)
La risposta è S2=S1/radical2
Grazie in ...
Salve a tutti, qualcuno potrebbe darmi una mano con questo problema?
Pag103 n91 del Nuovo Amaldi 2:
In un esperimento con due fenditure si utilizza una sorgente che emette una sovrapposizione di due diverse lunghezze d’onda, (mi scuso in anticipo ma non so dove inserire i simboli per i dati) Lambda-luce gialla=589 nm e lambda-luce verde incognita. Sullo schermo si osservano due figure di interferenza sovrapposte. In particolare, si nota che la quinta frangia luminosa della luce verde va a ...

in uno spettrometro arrivano deuterio, $ 3_{He $ e trizio. so che a 4GeV/cil tritone perde in media una energia $ <\DeltaE_t>\= 1MeV $ .
per valutare la perdita di energia degli altri nuclei, si può sfruttare quella del tritone così: $ <\DeltaE_d>\=<\DeltaE_t> \frac{(z_d)^2}{(z_t)^2} \frac{\beta_t^2}{\beta_d^2} $ e $ <\DeltaE_(3He)>\=<\DeltaE_t> \frac{(z_(3He))^2}{(z_t)^2} \frac{\beta_t^2}{\beta_(3He)^2} $
ma perchè devo procedere così e non posso calcolare semplicemente $ <\DeltaE_d>\=\frac{(z_d)^2}{\beta_d^2} $ e analogamente per He-3?

Salve a tutti. Mi servirebbe un piccolo check su un conto da me fatto riguardo un'osservazione fatta dal mio professore.
Lui ha affermato che se ho una base ortonormale su uno spazio $V$ di dimensione $n$, allora posto $P_k := P_{e_k} = \frac{\langle e_k, \* \rangle}{||e_k||^2}e_k = \langle e_k, \* \rangle e_k $ si ha che $P_k ^n = P_k$
L'osservazione è morta lì purtroppo e stavo cercando di capire come ci si arrivasse.
Ho capito che ci sono due vie, una più semplice (l'ho scoperta da una dispensa di qualche facoltà di matematica e penso ...
Ciao a tutti, ho un dubbio che riguarda la decomposizione in fratti semplici di una funzione razionale.
Considerando, ad esempio:
$(1)$ $\frac{2x+5}{x^2-1}=\frac{2x+5}{(x+1)(x-1)}=\frac{A}{x+1}+\frac{B}{x-1}$
$(2)$ $\frac{1}{x^3+x}=\frac{1}{x(x^2+1)}=\frac{A}{x}+\frac{Bx+C}{x^2+1}$
Perché nelle frazioni parziali il numeratore deve essere esattamente di un grado in meno rispetto al denominatore? C'è una dimostrazione che mi permetta di verificare ciò?
Ad esempio, nel caso $(2)$ ho notato che se al numeratore della seconda frazione parziale ci fosse una ...
Dimostrare che $AAtin(0,2pi)$ la serie $\sum_{n=1}^(+infty) cos(nt)/n+(isin(nt))/n$ converge.
Io ho fatto cosi: intanto riscrivo $\sum_{n=1}^(+infty) cos(nt)/n+(isin(nt))/n$ come $\sum_{n=1}^(+infty) cos(nt)/n+i\sum_{n=1}^(+infty) sin(nt)/n$. Da qui uso il teorema di Abel-Dirichlet sulle due serie che dice: Siano $a_n$ e $b_n$ due successioni tali che: le somme parziali $s_n$ di $a_n$ sono limitate, ossia $EEM>0$ tale che $|s_n|<=M$ $AAninNN$ dove $s_n=a_1+...+a_n$, $b_n$ tende a $0$ per ...

Vorrei chiedere un aiuto su come dimostrare (dato che non sono in grado e ci ho molto provato) che:
(sia f: V->W e la matrice assiciata a tale a.l.)
- dire: il rango di una matrice (associata) è uguale al n di righe equivale a dire che la funzione è suriettiva.
- dire: il rango della matrice è uguale al n di colonne equivale a dire che la funzione è iniettiva.
Ho capito solo intuitivamente il perché sfruttando il teorema delle dimensioni e che
-- dim(Im(f))=dim(V) => f iniettiva
-- ...
Ciao a tutti io partendo dalla funzione $f_k = \frac{x^k}{k!} $ sono riuscito a fare vedere, tramite il teorema di integrabilità termine a termine su un intervallo $[-a, a]$ che vale la relazione $sinh(a) = \sum_{k=1}^{\infty} \frac{a^k}{k!}$ per $k$ dispari.
Io vorrei usare la stessa strada per dimostrare la relazione $ cosh(a) = \sum_{k=0}^{\infty} \frac{a^k}{k!}$ per $k$ pari.
Tuttavia non so che $f_k$ utilizzare o che passaggio non riesco a completare.
Il mio problema sta nel fatto che quando faccio ...
A lezione abbiamo enunciato il teorema del limite centrale, che afferma che, considerata una successione $X_1, X_2,...,X_n$ di variabili aleatorie indipendenti, tutte con lo stesso valore atteso e la stessa varianza (finita), se $n->+oo$ allora la media campionaria di queste v.a. ha una distribuzione che, standardizzata, si può approssimare con una normale $N(0,1)$.
Siccome il nostro non è un corso particolarmente approfondito, mi sono sempre chiesto che senso abbia sapere ...

Buongiorno,
ho trovato che per ogni trasposizione $(i, j)$ con $i < j$ si ha \(\displaystyle \text{inv}((i, j)) = 2(j - i - 1) + 1 \).
Non capisco come va letta: $(i, j)$ è un'inversione di $\sigma \in S_n$ se $1 \leq i < j \leq n$ e $\sigma(i) > \sigma(j)$. Il numero \(\displaystyle \text{inv}((i, j)) \) di inversioni di $(i, j) \in S_n$ con $i < j$ non dovrebbe essere $0$ se $\sigma(i)<\sigma(j)$ o $1$ se $\sigma(i)>\sigma(j)$?
Potreste per ...

L'esercizio chiedo: determina il coseno dell'angolo formato dai vettori v:i-j+2k e u:i-j-4k
Il risultato è cos=-√3/3
Io provo a risolvere l'esercizio facendo u x v/|u|×|v| ma il risultato verrebbe -6/√108
Qualcuno mi saprebbe aiutare?

Ciao a tutti, ho la seguente domanda: se ho due basi, B={(0,1,1),(1,01,),(1,1,0)} e B’={(1,0,0),(1,1,0),(1,1,1)} e il vettore P=(1,2,3), qual è la differenza della matrice cambio di base da B a B’ e quella di cambio di coordinate? E come le calcolo?
Grazie mille
Sia $F$ un campo , ed $p(x)$ un polinomio irriducibile di grado $n$ a coefficienti in $F$, ha senso domandarsi quale sia il numero minimo di radici da aggiungere al campo base $F$ affinché si raggiunga il campo di spezzamento $E$ di tale polinomio? Esiste una correlazione tra tale numero ed il grado dell'estensione $E//F$?
Ad esempio se il polinomio ha grado $n=2$ sarà sufficiente aggiungere ...
Stavo studiando la definizione di massimo e minimo limite e mi sono sorti dei dubbi sul modo in cui viene costruita. Vi scrivo di seguito il tutto.
Sia $(a_n)$ una successioni di numeri reali limitata superiormente. Poniamo $\forall k \in N, A_k ={a_n|n>=k}$.
Risulta che $A_0 \sup A_1 \sup A_2 ... \sup A_k$
e che $\forall k \in N A_k$ è limitato superiormente essendo (a_n) limitata superiormente.
Per il teorema di esistenza dell'estremo superiore $\exists Sup A_k \in R \forall k \in N$.
Poniamo $\forall k in N L_k =SupA_k$
Osserviamo che la successione ...
Salve a tutti, come risolvo questo esercizio?
Grazie a chi mi aiuterà
Salve a tutti, come risolvo questo esercizio?
Grazie a chi mi aiuterà

.
Ciao ragazzi vorrei sapere se il mio procedimento risolutivo è corretto.
La riflessione di f(X) = AX + C dove A è la riflessione rispetto all'asse y (x = 0) => A = $ ( ( -1 , 0 ),( 0 , 1 ) ) $ ;
mentre C indica la traslazione ed essendo che la retta x=1 è spostata verso destra di 1 rispetto l'asse y => il vettore traslazione sarà C = (2,0). è corretto?
Poi vorrei sapere come determinare "A" perchè io l'ho scritta in quel modo in quanto è la matrice di riflessione rispetto un'asse ...

Un fotone di lunghezza d'onda 0,066 À urta contro un elettrone in quiete e viene diffuso con un angolo di 60°. Calcola la lunghezza d'onda del fotone diffuso e la quantità di moto dell’elettrone dopo l'urto.
[0,078 À; 9,4 - 10 kg - m/s]
Salve a tutti vi propongo la mia risoluzione del problema perchè il risultato non torna precisamente:
allora prima di tutto ho portato la lunghezza d'onda incidente in m e mi viene $6,6*10^-12$m
poi ho trovato la variazione della lunghezza d'onda del ...

Buongiorno, non so se è la sezione giusta, nel caso spostate.
Sto provando a verificare che $forall x , y \ in RR$ in particolare $yne0$ allora si ha $ |frac{x}{y}|=frac{|x|}{|y|}$.
Se $x ge 0$ e $y>0$ allora $frac{x}{y} ge 0 to |frac{x}{y}|=frac{x}{y}=frac{|x|}{|y|}$
Se $x ge 0$ e $y<0$ allora $frac{x}{y} le 0 to |frac{x}{y}|=-frac{x}{y}=???$
Qual'è il significato di $-frac{x}{y}$, questo $frac{-x}{y}$ oppure $frac{x}{-y}$?
Mi sono dato una mezza risposta, cioè se considero un numero reale ...
Salve a tutti.
Sto risolvendo questo esercizio:
in cui si chiede di calcolare la potenza dissipata sul condensatore.
Ho deciso di risolvere con Thevenin. La mia domanda è: una volta tolto il condensatore e calcolata l'impedenza equivalente parallelo tra resistore da 1Ohm e induttore, la corrente $ I1 $ "svanirebbe" quindi il generatore pilotato diventerebbe un cc giusto?