Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
ciao ragazzi sto risolvendo un esercizio di ricerca di massimi e minimi vincolati; ho che $f(x,y)=x-y $
mentre il vincolo è $g(x,y)=atg(x^2+y^2-2)-2+x-y=0$. devo imporre che il gradiente della lagrangiana $L(x,y, \lambda)$ sia $(0,0,0)$ e risolvendo il sistema di 3 eq in 3 incognite:
$1-\lambda((2x)/(1+(x^2+y^2-2)^2)+1)=0$
$-1-\lambda((2y)/(1+(x^2+y^2-2)^2)-1)=0$
$atg(x^2+y^2-2)-2+x-y=0$
ottengo $x=-y$ ponendo uguali i valori di /lambda esplicitati dalla prima e dalla seconda equazione. sostituendo nella terza del vincolo (derivata ...
Buongiorno a tutti!
facendo degli esercizi mi sono imbattuto in questa funzione di cui devo fare (come da titolo) una serie di Laurent intorno alla singolarità $z=i$:
$f(z)=(z^2)/(z^4+5z^2+4)$
Questa funzione dovrebbe: essere regolare a $z= \oo$ ed avere poli semplici in $z=+-i$ e $z=+-2i$.
solitamente per trovare lo sviluppo in serie di Laurent di altre funzioni (ad esempio $g= z/((z+1)(z+2))$ intorno a $z=-2$) procedevo con una sostituzione del tipo ...
Ciao, allora io dovrei studiare le singolarità della funzione
$f(z) = sin^2(z)/(z*(z^2+1))$
Io individuo le singolarità da studiare in $z_0=0$, $z_(1,2)=+-i$
Ora,
$lim_(z->0)f(z) = lim_(z->0)(sin(z)/z)*(sin(z)/(z^2+1)) = 0$
Per il limite per $z->+-i$, ho pensato di scrivere $sin(z)=(e^(iz)-e^-(iz))/(2i)$ ed effettuare il $lim_(z->+-i)$... mi confermate che ho imboccato la strada corretta?
Salve , come risolvere questo limite applicando la formula di Taylor?
$\lim_{n \to \infty}(2n+3)/(4+3n+5nsqrt(n))$
da cui $(2n+o(n))/(5nsqrt(n)+o(nsqrt(n)))=0$ non capisco quali passaggi portano all'utima espressione.
Negli altri esercizi che ho incontrato al contrario di questo ho riconosciuto sempre sviluppi noti. Grazie.
Salve a tutti. Mi servirebbero delle definizoni precise di asse, piano e centro di simmetria di un solido. In particolare, mi chiedevo: un cilindro messo in verticale ha un solo asse di simmetria (quello verticale appunto) o ne ha anche altri? In teoria, ad esempio, il cilindro torna nella ua posizione iniziale anche a seguito di una rotazione di 180° attorno ad una asse orizzontale.... insomma, quanti assi di simmetria ha un cilindro? Si può, inoltre, parlare di "centro di simmetria" per un ...
Ciao , dovrei trovare le radici della seguente funzione complessa di variabile complessa :
$T(m)=$$\sum_{n=1}^prop $$1/(2n)^m$
ma non le so trovare , una volta posto $\sum_{n=1}^prop $$1/(2n)^m=0$ è buio totale ..
sapete dirmi quali siano le sue radici ?
Vi ringrazio anticipatamente
Buongiorno a tutti! Sto provando a preparare l'esame di AM2, ma le difficoltà sono congrue. Un esercizio nemmeno troppo difficile (considerati gli altri!) mi chiede di determinare una soluzione dispari in serie di potenze per l'e.d.o.
$y''-xy'+\alpha y =0$
al variare di $\alpha$ nei reali.
Inizialmente non mi sono lasciato spaventare e ho cercato soluzioni in forma $y=\sum A_n x^n$ da cui derivando e sostituendo si perviene ad un'espressione in cui tre sommatorie non sono sincronizzate ...
Limite di funzione (75282)
Miglior risposta
Lim x^2+5sinx /
x→0 3x- xcosx
Non riesco a risolvere questo limite di funzione! Potete spiegarmelo x favore? In quanto non ho mai fatto sin, cos e di questo tipo non so risolverli. La forma indeterminata è 0/0, però poi non so scomporlo! Certa di una vostra risposta, vi ringrazio anticipatamente!! =)
ciao a tutti,
volevo chiedervi qualcosa a proposito delle costanti ingegneristiche E modulo di Young e v coefficiente di Poisson.
A partire dalle relazioni:
$E=mu(3lambda + 2mu)/(lambda+mu)$
$ni=lambda/(2(lambda + mu))$
come ricavo le costanti ingegneristiche? $mu=E/(2(1+nu))$ ; $lambda=(E*ni)/((1+nu)*(1-2nu))$
Perchè $nu$ deve essere compreso tra $0$ e $1/2$ ? e perchè $E>0$
Cioè come si spiegano le limitazioni per le costanti $E$ e $nu$
Grazie ...
Ciao a tutti,
ho cominciato a studiare le serie di funzioni e totale-uniforme convergenza delle stesse. Il testo su cui studio è "analisi matematica 2" seconda edizione di Enrico Giusti. L'autore dopo aver introdotto alcuni teoremi iniziali per le serie in spazi di Banach (totale convergenza, integrazione e derivazione per serie) propone due esercizi (pag. 43 es. 1.1 e 1.2). Il primo chiede di provare l'uniforme convergenza delle serie date negli intervalli indicati, e fin qui tutto bene, il ...
Inanzitutto mi scuso se è la seconda discussione che apro in poco tempo, non apro topic per ogni stronzata, ma sono diversi giorni che faccio decine e decine di esercizi.
I miei problemi nascono su questi tre esercizi:
8. Mostrare che un sottogruppo normale di un gruppo è unione di classi
di coniugio.
9. Stabilire se la seguente affermazione ` vera o falsa: Siano G, G' gruppi
finiti. Se G e G hanno lo stesso ordine, allora Aut(G) e Aut(G' ) hanno
lo stesso ordine.
10. Determinare ...
Ciao a tutti
scrivo ancora per rettificare se ho svolto bene questo esercizio applicando allo stesso esercizio sia il criterio dell'assoluta convergenza sia il criterio di Leibnitz ( lo ho fatto per esercizio so che ne basta scegliere uno dei due )
$\sum_{n=1}^oo (-1)^(n+1)/(n^2-(-1)^n)$
ho applicato prima il criterio di assoluta convergenza e ottengo passando al modulo, se ho applicato bene, questo:
$\sum_{n=1}^oo 1/(n^2-1)$ da cui essendo questo $~= 1/n^2$ concludo che si comporta in modo simile e che quindi ...
Ciao a tutti !
Ho un dubbio per ciò che riguarda la determinazione di una quadrica.
Quando trovo che il determinante della matrice associata è diverso da zero so che la quadrica è generale e quindi studio il determinante di A* (sul mio libro viene chiamata così,che è la matrice ottenuta togliendo ultima riga e ultima colonna dalla matrice della quadrica).Se il determinante di A* è diverso da zero poi posso avere un ellissoide o un iperboloide.Da qui dovrei studiare la conica impropria ...
La definizione afferma quanto segue: il generatore ideale di corrente fornisce ai morsetti una corrente sempre identica, indipendentemente dalla variazione di tensione.
Tuttavia volevo porvi una domanda:
La tensione può assumere qualsiasi valore positivo o negativo?...o meglio, se ho una situazione di questo tipo:
V può assumere qualsiasi qualsiasi valore positivo e negativo o solo positivo (dato che le cariche positive si spostano in direzione del campo elettrico)?
Ragazzi buonasera a tutti.
Volevo chiedervi se avete idee sul come risolvere il seguente esercizio:
Calcolare la lunghezza della curva cartesiana $gamma$ il cui supporto è grafico della seguente funzione:
$y =x/(x+1)*sin(1/x)$ con $x in (0,1]$
In teoria la detta $phi(t)$ una parametrizzazione di $f(x)$, la lunghezza della curva la posso ottenere calcolando:
$int_(0)^(1) ||phi'(t)||dt$
Ma ponendo $x = t$, quello che viene fuori è vagamente improponibile.
Idee?
ciao a tutti scrivo per un altro dubbio che mi è appena sorto svolgendo questo esercizio, è la prima volta che faccio un esercizio del genere e chiedo a voi se ho svolto nel modo giusto. L'esercizio dice:
calcolare il seguente limite :
$\lim_{n \to \infty}root(n)(2^n+3^n)$ ... io ho svolto cosi, prima me la sono scritta nella forma: $\lim_{n \to \infty}(2^n+3^n)^(1/n)$
adesso ho pensato di moltiplicare e dividere per $3^n$ in questo modo: $\lim_{n \to \infty}(3^n*(2^n+3^n)/3^n)^(1/n)$
quindi separo un po i termini e ottengo questo: ...
Scrivo perchè mi trovo un attimino in difficoltà con alcuni esercizi.
Ad esempio dato (Q, +) devo trovare il sottogruppo minimo contenente ${2/3,3/2}$ e dimostrare che esiste un numero razionale $m/n$ tale che H risulti essere il minimo sottogruppo contenente $m/n$
Ora dalla definizione ricordo che il sottogruppo che sto cercando è il sottogruppo generatore di ${2/3,3/2}$. Sebbene in caso di gruppi finiti mi aiuto con LaGrange, qui non saprei come ...
Salve a tutti, sto cercando di imparare questi teoremi di sylow, se qualcuno mi da un parere su questi esercizi che ho fatto riceverà in cambio tanta gratitudine
1) Sia $ G $ un gruppo e $ H $ un sottogruppo normale. Sia $ P $ un p-sylow di $ G $, mostrare che $ P \cap H $ è un p-sylow di $ H $.
Sia $ K_H $ un p-sylow di $ H $, allora esiste un p-sylow $ K <= G $ tale che $ K_H <= K $ e ...
Ho due matrici [tex]P, N[/tex] reali simmetriche, una definita positiva e l'altra definita negativa. Posso essere certo che [tex]PN[/tex] è diagonalizzabile?
______________
Il problema origina da un testo che sto leggendo: ad un certo punto spunta fuori un sistema di equazioni differenziali
[tex]$P \ddot{\mathbf{x}}=N\mathbf{x}[/tex]
dove [tex]P, N[/tex] sono come sopra e in particolare non dipendono dal tempo. L'autore procede con la risoluzione con la sicurezza di trovare un sistema ...
Salve.
Per esigenze di lavoro devo interfacciarmi con un dispositivo seriale, che ha un micro embedded.
Come interfaccia uso una COM port virtuale, cioè un dispositivo USB che termina con una interfaccia RS232.
Quello che ho bisogno di fare è di cambiare al volo la velocità di trasmissione ricezione, passando da 115200 bps a 9600 bps.
Questo cambio deve avvenire in max 1 millisec. Uso VisualBasic Express 2008. Facendo delle prove, li cambio di velocità richiede almeno 25 ms, che è troppo per ...