Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
gior.gia911
ciao ragazzi..ho bisogno di un chiarimento totale.. sono alle prese cn gli infiniti e infinitesimi( utilissimi per risolvere limiti assurdi) ma non riesco a capire come determinare alfa nel calcolo del limite per sapere l ordine.. allora io so k f(x) è di ordine alfa rispetto a g(x) se lim per x-->c f(x)/g(x)^alfa = l diverso da 0. ma io come mi trovo alfa??ho capito k devo far riferimento ai limiti notevoli..ma ci sara un modo.. il prof a lezione ha detto che 1-cosx è di primo ordine rispetto ...

mirko.celentano
Ciao a tutti, sto lavorando ad una tesina che devo presentare per un esame (Ottimizzazione Combinatoria) in cui bisogna risolvere un problema di Simple Plant Location Problem (per chi non sapesse di cosa sto parlando, guardare spoiler) con 100 customers e 100 Plant Facility Location. There are a number of m cities/customers and n potential facility locations. With each location we associate a nonnegative opening cost f_i. Between each facility i and each city j there is a nonnegative ...

gundamrx91-votailprof
Un punto $x$ si dice di accumulazione per un sottoinsieme $A$ se per ogni intorno di $x$ esiste un $a in A$ diverso da $x$. Sia $A sub NN = {0,1,2,3,4,5}$ e sia $x=3$; un suo intorno può essere $B(3,1)$ ? In questo caso $x=3$ non sarebbe un punto di accumulazione dato che corrisponde al punto stesso; mentre se un intorno di $x$ fosse definito come $B(3,2)$ allora potrebbe essere un ...

streglio-votailprof
Salve a tutti. non ho ben chiaro come trovare la soluzione particolare di un'equazione differenziale di secondo ordine non omogenea. Per esempio: $y''-2y'+y=x$ Le radici sono uguali ad 1 con molteplicità due (credo si dica in questo modo). osserviamo che $b^2-4ac=0$ quindi la soluzione generale dell'omogenea associata è: $y(x)=c1e^x+c2xe^x$ Da quello che ho capito la soluzione particolare ha lo stesso ordine del polinomi a destra dell'equazione omogenea, quindi x. Ora farei la ...

stranigno
Ciao a tutti, mi sono imbattuto in questo quesito. Ho un endomorfismo la quale matrice associata è: $((2,0,t),(0,-1,1),(t,1,1))$ Dovrei rispondere a questa domanda: "L'endomorfismo $\phi$(t) è diagonalizzabile per ogni t, perché?" Io ho calcolato il determinante della matrice ottenuta sottraendo ad ogni elemento della diagonale l'autovalore generico $\lambda$, ma mi trovo in un'equazione di terzo grado in $\lambda$ con in mezzo anche il parametro t che non riesco a ...
2
20 dic 2011, 16:16

outcs3
ho problemi con questa disequazione: non so come risolverla pochè non riesco adespicitare la x in modo analitaco $ sqrt(e^{x}-x)-1\leq 1 $
1
20 dic 2011, 15:44

ddg92
Salve a tutti chiedo un aiuto per quanto riguarda la risoluzione di questi due integrali.Grazie mille in anticipo. 1) $\int xlog(2/x)dx$ 2) $\int_-infty^1x(e^(2^x))^2dx$
10
20 dic 2011, 12:28

DajeForte
Suppose that a coin with probability p of heads is tossed repeatedly. Let $A_k$ be the event that a sequence of $k$ (or more) consecutive heads occurs amongst tosses numbered $2^k,\ 2^{k }+ 1,\ 2^{k} + 2, ... ,\ 2^{k + 1} - 1$. Calculate $P(A_k, i.o .)$ (il limsup degli $A_k$). HintBorel Cantelli
14
15 dic 2011, 14:40

gundamrx91-votailprof
Sto rivendendo un pò la teoria relativa ai polinomi, e nella mia dispensa si parla di ideali principali come presupposto alla divisione euclidea tra polinomi. Verificando in diversi testi ho che la definizione di ideale è la seguente: Sia $(A,+,*)$ un anello, e sia $I$ un sottoanello di $A$. $I$ è un ideale se $AAa in A$, $EEi in I$ tale che $i*a in I$ e $a*i in I$. Nella mia dispensa invece trovo la seguente ...

yurifrey
Salve a tutti, credo di avere le idee un po' confuse riguardo alla creazione di una mesh su cui poter lavorare ad esempio con fluent (o comunque un programma di simulazione). So usare (anche se con conoscenze molto di base) catia v5, ma non ho be capito il meccanismo con cui trasformare un solido creato con catia (ad esempio in .igs) in una mesh su cui poi lavorare con fluent. Ho trovato molte cose su internet che spiegano tutti i problemi connessi alla creazione di una mesh, come migliorarla ...
1
13 dic 2011, 15:37

Krocket
Buongiorno, potreste aiutarmi con le seguenti domande: 1) A,B matrici nxn, invertibili $rarr$ $A*B$ invertibile - è falsa 2) A,B matrici 3x3, invertibili $rarr$ $det(A+B) != 0 $ - è falsa 3) A,B matrici invertibili nxn $rarr$ $A^(-1)+B^(-1)$ è invertibile - è falsa 4) A matrice invertibile a coefficienti reali $rarr$ $detA = +-1$ - è falsa 5) $det(A+B)=0$, $det(A-B)=0$ $rarr$ o $detA=0$ o ...
1
19 dic 2011, 13:48

BoG3
Ciao a tutti, mi trovo un po' in difficolta' con un limite che sto cercando di risolvere e vi vorei chiedere consiglio: $lim_{x \to 0} (1+sin(x^2-x)-\e^-x)/(x*log(1-3x))$ Guardandolo ho pensato: beh ... non mi cadono all'occhio i limiti notevoli banalmente... ma se io riordino tutto così: $lim_{x \to 0} (-\e^-x +1 + sin(x^2-x))/(x*log(1-3x))*(-1)/(-1)$ $lim_{x \to 0} (\e^-x -1 - sin(x^2-x))/(-x*log(1-3x)) * (x^2-x)/(x^2-x)$ $lim_{x \to 0} (\e^-x -1-sin(x^2-x))/(-x*(x^2-x))*(x^2-x)/(log(1-3x))$ $lim_{x \to 0} [(\e^-x -1)/(-x*(x^2-x))-sin(x^2-x)/(-x*(x^2-x))]*(x^2-x)/(log(1-3x))$ $lim_{x \to 0} [(\e^-x -1)/-x*1/(x^2-x)+sin(x^2-x)/(x^2-x)*1/x] *(x^2-x)/(log(1+(-3x)))$ $lim_{x \to 0} [(\e^-x -1)/-x*1/(x^2-x)+sin(x^2-x)/(x^2-x)*1/x] *(x^2-x)/(log(1+(-3x)))*(-3x)/(-3x)$ $lim_{x \to 0} [(\e^-x -1)/-x*1/(x^2-x)+sin(x^2-x)/(x^2-x)*1/x] *(-3x)/(log(1+(-3x)))*(x^2-x)/(-3x)$ Ora mi tiro fuori i limiti notevoli: $lim_{x \to 0} (\e^-x -1)/-x*1/(x^2-x) = 1*\infty$ $lim_{x \to 0} sin(x^2-x)/(x^2-x)*1/x = 1*\infty$ ...
7
19 dic 2011, 17:32

star891
ciao a tutti..non riesco a risolvere un esercizio, posto qui il testo "Si considerino gli ideali \( I=(26) \) e \( J=(12+5i) \) nell' anello \( A=Z\). Descrivere il reticolo degli ideali di \(A/I \) specificando quali fra essi sono primi, e calcola gli elementi nilpotenti. Stabilire se l' anello \(A/(I+J)\) è un dominio finito." Se al posto di \(Z\) ci fosse stato \(Z \) non avrei avuto problemi in quanto avrei dovuto prendere i divisori di \(26\) e sfruttare il teorema di corrispondenza tra ...

falseaccuse
La distribuzione di Boltzmann, che mi dà il numero di particelle nell'intervallo $dE$ per un gas all'equilibrio a temperatura $T$, è $dn(E)=Ae^(-E/(kT))dE$. Se io voglio trovare l'energia media, faccio energia totale su numero di particelle, cioè sommo tutte le energie di tutte le particelle e poi divido per il numero totale di particelle $(int_0^{+infty} Edn(E))/(int_0^{+infty} dn(E)) = (int_0^{+infty} Ee^(-E/(kT))dE)/(int_0^{+infty} e^(-E/(kT))dE) = kT$ ma questo non è in contrasto con l'equipartizione dell'energia, che per l'energia media di un gas monoatomico ad ...

baldo891
ciao vorrei sapere come posso fare per scrivere un programma che calcoli il fattoriale di numeri grandi... con il seguente codice #include int main() { int n, i; long int fatt = 1; printf("Inserisci un numero : "); scanf("%d",&n); for (i = 1; i
2
18 dic 2011, 23:34

t4k30
Salve matematici! Primo post per me!(spero di non sbagliare nulla...) Ho una domanda abbastanza banale sulla PL: come si risolve un problema di PL utilizzando il simplesso duale? Cioè, ho un problema primale, lo trasformo in duale e poi? Utilizzo il simplesso introducendo variabili di slack ecc. come nel primale oppure devo utilizzare un altro metodo? Grazie mille a tutti(qualche esempio è benaccetto, se proprio vi va'... )

ST481240162
Salve, vorrei chiedere un piccolo aiuto. Ho i limiti seguenti: $ lim_(x -> -oo ) (1 + e^x)^x; $ $ lim_(x -> +oo ) (1 + e^x)^-x $ prendiamo ad esempio il primo: lo "riduco" nella forma: $ lim_(x -> -oo ) {[(1 + 1 / 1 / e^x )]^(1 / e^x)} ^(x * e^x) $ e ottengo $ lim_(x -> -oo ) e ^(x * e^x) $ ricado di conseguenza nella forma indeterminata $ (-oo)*(0) $ . Cosa faccio per risolvere il limite in questione (e l'altro), visto che questo modus operandi non permette di risolverlo? Saluti!

paolotesla91
Salve ragazzi ho un problema con un esercizio dove devo calcolare il flusso di un campo $f$ attraverso una superficie. il problema sta nell'interpretazione della figura e vorrei una conferma. La mia superficie $S$ è data da: $S=S_0US_1$ quindi la sua frontiera sarà $delS=delS_1UdelS_2$. Gli insiemi sono così definiti: $D={(x,y) in RR^2: x^2+y^2<=1}$ $S_0={(x,y,0) in RR^3: (x,y) in D}$ $S_1={(x,y,z) in RR^3: (x,y) in D, z=1-x^2-y^2}$ In più ho l'informazione che il volume $E$ racchiuso da S ...

balestrav
Salve, ho una domanda per quanto riguarda la migliore costante nella disuguaglianza di Sobolev (per chi lo conosca mi riferisco all'articolo di Talenti 'Best costant in sobolev inequality'). La disuguaglianza che conosco è su [tex]\mathbb{R}^n[/tex] e considera funzioni che stanno in [tex]W^{1,p}(\mathbb{R}^)[/tex], [tex]||u||_{L^{p^*}} \leq ||\nabla u||_{L^p}[/tex]. Ora mi sembra di capire che nell'articolo si trovi la miglior costante per una classe più ristretta di funzioni, cioè ...
6
19 dic 2011, 14:10

Mrhaha
Ragazzi oggi una ragazza iscritta al cdl di Biologia mi chiede del teorema del differenziale! Ovviamente non è quello che intendo io, quello delle funzioni a più variabili, ma allora mi chiedo, qual è? Qualche idea?
8
16 dic 2011, 21:02