Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Uploaded with ImageShack.us
Scusate non sapevo e non era mia intenzione! In ogni caso ho voluto postare l'immagine altrimenti era difficile comprendere il problema.
Nel calcolare la corrente non so con quale tipo di resistenza devo procedere, se usare la resistenza equivalente di tutto il sistema oppure quella singola.
I risultati sono: a) I(3,2)= 1,1A ; I(7,1)=0,29A
b) 1,4A
c) 11,3V
Un generatore di f.e.m. sinusoidale con tensione di picco pari a 20 V viene collegato ad un circuito RLC serie. Alla frequenza di risonanza di 2.0 kHz, la corrente di picco è 50 mA; a 1.0 kHz è di 15 mA. Ricavare i valori di R,L e C.
risolvendo questo sistema:
${(epsilon_0=i_01sqrt(R^2+i_01(omega_1L+1/(Comega_1)))),(epsilon_0=i_02sqrt(R^2+i_02(omega_2L+1/(Comega_2)))),(C=1/(omega_1^2L)):}$
dovrei riuscire a rispondere alla domanda, sarebbe di tre equazioni in tre incognite quindi risolvibile, ma quello che mi chiedo $epsilon_0$ è costante al variare della frequenza?
Salve a tutti. Sto cercando di risolvere un problema sull'entropia ma non riesco a capire dove sbaglio.
Il problema dice:
Una massa pari a 10 g di acqua alla temperatura di 20°C viene trasformata in ghiaccio e portata a -10°C mantemnendo sempre la pressione costante (atmosferica). Prendendo come valore del calore specifico del ghiaccio 2040 J/(kg*K) e ricordando che il suo calore di fusione a 0°C è pari a 3,34*10^5 J/kg, calcola la variazione di entropia del sistema.
Il risultato dovrebbe ...
Inanzitutto complimenti per il forum. Vi seguo da diverso tempo, ma questa è la prima volta che posto un quesito.
Sto cercando di capire la risoluzione di questo esercizio:
\(\displaystyle \lim_{x \to \infty} \left( {2x + 1} \over {2x + 3} \right)^{4x + 1} \)
Ho trasformato la funzione come segue
\(\displaystyle \lim_{x \to \infty} \left( 1 - {{2} \over {2x + 3}} \right)^{4x + 1} = \lim_{x \to \infty} \left( 1 - {{2} \over {2x + 3}} \right)^{-{{2} \over {2x + 3}}{{2x + 3} \over {2}}(-4x - ...
Ciao a tutti, ho tra le mani questo endomorfismo $ f:cc(R) ^4rarr cc(R) ^4 $
$ f( ( 1 ),( 0 ),( 0 ),( 0 ) )= ( ( 2h^2 ),( 0 ),( 0 ),( 0 ) ) ; f( ( h ),( 1 ),( 0 ),( 0 ) )=( ( 2h^3+h ),( h ),( 0 ),( 0 ) ) ; f( ( 0 ),( 3 ),( 1 ),( 0 ) )=( ( 3(h-1) ),( 3(1+h) ),( 2 ),( -h ) ) ; f( ( 0 ),( 0 ),( 0 ),( 1 ) )=( ( -3 ),( 3 ),( h ),( 4 ) ) $
Devo trovare la matrice associata e gli autovalori nel caso $ h=1/2 $.
Per la matrice associata, procedo in questo modo:
$ a( ( 1 ),( 0 ),( 0 ),( 0 ) ) + b ( ( h ),( 1 ),( 0 ),( 0 ) ) + c ( ( 0 ),( 3 ),( 1 ),( 0 ) ) + d ( ( 0 ),( 0 ),( 0 ),( 1 ) ) = ( ( 2h^2 ),( 0 ),( 0 ),( 0 ) ) $
metto a sistema e risolvo trovando:
$ ( ( 2h^2 ),( 0 ),( 0 ),( 0 ) )= e_1 $
Allo stesso modo faccio per gli altri vettori immagine di $ f $, ottenendo:
$ ( ( h(2h^2+1-h) ),( h ),( 0 ),( 0 ) )= e_2 ; ( ( -3(1+h^2-2h) ),( -3(1-h) ),( 2 ),( -h ) ) = e_3 ; ( ( -3(1+h-h^2) ),( 3(1-h) ),( h ),( 4 ) ) = e_4$
La matrice associata quindi è:
$ A_h = (e_1 ; e_2 ; e_3; e_4) = ( ( 2h^2 , h(2h^2+1-h) , -3(1+h^2-2h) , -3(1+h-h^2) ),( 0 , h , -3(1-h) , 3(1-h) ),( 0 , 0 , 2 , h ),( 0 , 0 , -h , 4 ) ) $
Ora per trovare gli autovalori con ...
Scusate la domanda sciocca, ma a volte la mia insicurezza mi fa affogare in un bicchier d'acqua.
Avere un sottospazio vettoriale $ W={ x+y+z+t, 0, 0 } $, significa avere un sottospazio dato da:
$ { ( x=-y-z-t ),( y=y ),( z=z ),( t=t ):} rArr ( ( x ),( y ),( z ),( t ) ) = y( ( -1 ),( 1 ),( 0 ),( 0 ) )+z( ( -1 ),( 0 ),( 1 ),( 0 ) )+t( ( -1 ),( 0 ),( 0 ),( 1 ) ) $
quindi con una base $ B_w $ data da: $ B_w = {( ( -1 ),( 1 ),( 0 ),( 0 ) ); ( ( -1 ),( 0 ),( 1 ),( 0 ) ); ( ( -1 ),( 0 ),( 0 ),( 1 ) )} $
E' corretto?
.BRN
Ho due dubbi molto banali sulla teoria della misura di Lebesgue:
1) Un insieme misurabile può avere un sottoinsieme non misurabile??;
2) Un insieme ha misura finita se e solo se è misurabile??;
Sapreste dirmi perchè $|e^{\pm ix}| =1$? All'esponente della $e$ dev'esserci per forza $i$ affinchè ciò si verifichi ?
vi spiego in parole pover qual è il problema: ho un ciclo Rankine con 2 surriscaldamenti ed ho i seguenti dati Pcaldaia=100 bar, Prisurriscaldamento=30 bar, Pcondensatore=0.1 bar, Tmax=Trisurriscaldamento=T3=T5=773.15 K , Portata di vapore=10kg/s. Allora utilizzando le tabelle termodinamiche del vapor d'acqua, devo calcolare il rendimento, il lavoro utile specifico, il lavoro di pompaggio e le quantità di calore specifiche scambiate nel ciclo, e la potenza dell'impianto.
Guardando la tabella ...
Ciao a tutti, avevo bisogno di capire come si calcola il momento centrifugo, relativamente alle aree. So che nel caso di sistemi continui e omogenei, per definizione, esso è dato da:
$ I_(xy) = int_(A) xy dA $
Ora, non avendo studiato gli integrali di superficie (che so essere argomento assolutamente propedeutico per molte materie), non sò come si esplicita e quindi come si calcola l'integrale.
Ad esempio, nel caso della seguente figura
le dispense da cui sto studiando riportano che:
...
Ciao a tutti,scrivo le mie due domande qui in modo da evitare doppi post..
1
Svolgendo il limite $ lim_(n -> oo) 2 ^(n^2)/(n!+1) $ ,in base agli ordini di infinito di $ n! $ e $ 2^n$ ho dato subito piu valore a $ n! $ dando subito come risultato $ 0 $ .Il risulttato Non é esatto,ma ho visto che vi é uno svlgimento preciso.quello che vorrei chiedervi é xchè non si può in questo modo..
2
Serie parametriche
Vorrei capire come lavorare,sulle serie parametriche..
...
Un esercizio di un tema d'esame dice di determinare la forma algebrica delle soluzioni complesse dell'equazione $iz^3=27$
Io ho pensato di fare $z^3=27/i$ , quindi $z=root(3) (27/i)$
$z=3/root(3) i$
A questo punto come mi comporto?
Come posso risolvere questo esercizio?
Determinare per quali n, numeri primi con $n<=17$, il polinomio $x^2+x+1$ è irriducibile in $Z_n[x]$.
Non riesco proprio a vedere una possibile soluzione ... ho provato partendo dal fatto che essendo di grado 2 è irriducibile se non ammette radici, ma non mi è servito a molto!
Ciao ragazzi,
Volevo sapere se un qualsiasi insieme infinito, limitato e chiuso può considerarsi un compatto.
O meglio, un intervallo limitato e chiuso definito su Q (o R o comunque insieme i cui intervalli contengono infiniti punti) è un compatto?
Io ho pensato che essendo un intervallo definito in Q allora contiene infiniti valori, quindi ammette una successione; essendo limitato questa successione potrà essere convergente per Bolzano-Weierstrass; ed essendo chiuso contiene tutti i suoi ...
E' probabile che mi manchi qualche pezzo di teoria di Analisi I e II. En tout cas, pongo la mia questione:
nel calcolo degli integrali con la formula dei residui spesso ci si trova a stimare degli integrali al tendere di una variabile ad infinito. Per esempio, sia $C^{+}$ la semicirconferenza di raggio $R$ centrata nell'origine e contenuta nei primi due quadranti. Sia $t:[0, \pi] \to \mathbb{C} : t \mapsto Re^{it}$ la parametrizzazione di $C^{+}$. Supponiamo di voler valutare:
\[
\lim_{R ...
Ciao a tutti avrei un problema. Non riesco bene a capire perchè la funzione di heaviside pur essendo limitata [0,1] non è integrabile. So che perchè una funzione sia integrabile deve esistere finito il limite con n che tende a infinito della somma di Cauchy-Reiman e probabilmente sbaglio qualcosa perchè proprio non riesco a comprendere la spiegazione.Grazie ciao.
Salve a tutti, è la prima volta che scrivo qui e innanzi tutto volevo farvi i complimenti per la realizzazione di questo portale; ho letto attentamente tutta la discussione relativa allo studio delle funzioni, ma ho ancora un po' di dubbi sulla risoluzione di una particolare funzione integrale, cioè:
\[ {F}{\left({x}\right)}={\int_{{0}}^{{\cos^2x}}}{\frac{{{{1}}\cdot{\left.{d}{t}\right.}}}{{{{\sqrt[{3}]{\log t}}}}}} \]
ho svolto lo studio dell'integranda, ma non capisco bene i passi ...
Ragazzi Ho Fatto il seguente esercizio e volevo chiedere a voi un parere in merito allo svolgimento:
Si Studi Al Variare di $ \alpha $ la convergenza della seguente serie di funzioni:
$ sum_(n = 1)^(\infty) x/(\sqrt(n)(1+n^(\alpha)x^2))$
Allora Ho Ragionato Cosi':
Per $ x = 0$ la serie ha somma 0
Per $ x > 0$ e $ \alpha > 0$
Ho applicato il criterio degli infinitesimi per le serie numeriche con $ p= \alpha + 1/2 $
Quindi ho svolto il limite:
$ lim_(n -> +\infty) (n^(\alpha+1/2)x)/(\sqrt(n)(1+n^(\alpha)x^2))$ = 1/x
Dunque se ...
Ciao raga come posso fare per risolvere il terzo esercizio di http://www.dm.uniba.it/~barile/Rete/Tra ... cia_26.pdf perchè non posso fare radice=r/s con r che deve dividere il termine noto e s che deve dividere il coefficiente direttore dato ke gli esponenti sono troppo grandi! ..grazie!
Ciao ho questa serie che mi sembra complicata:
\(\displaystyle \sum_{n=1}^\infty (1-tan(\frac{1}{2n}))^{n^2} \);
il limite della successione vale $0$, non scrivo tutti i calcoli perché è abbastanza lungo, però
dopo non capisco quale criterio usare per verificare se converge o diverge.