Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve a tutti volevo postare la soluzione che ho dato a un esercizio e sapere se ho fatto bene....
Una studentessa lancia in verticale un mazzo di chiavi ad una compagna che sta al piano di sopra, ad un altezza di 4 metri .
Le chiavi vengono afferrate dopo 1,5 s . Calcolare la $V_i $ e la $V_f$
Ho ragionato cosi':
La compagna che effettua il lacio terrà le chiavi ferme in mano e quindi la $V_i = 0$
Se so che la velocità iniziale è 0 allora posso usare : ...
Ciao ragazzi,
uno dei problemi di cui si occupa la mia tesi di laurea magistrale riguarda le oscillazioni
assialsimmetriche dei gusci sferici. Nel sistema di equazioni differenziali che ho ricavato,
una delle equazioni è "disaccoppiata" dal resto, ed è la seguente equazione omogenea:
\(g''(\theta)+\cot\theta\,g'(\theta)+ \left(K-\cot^2 \theta\right)g(\theta) = 0\)
con \(K\) costante positiva nota.
Ho bisogno di una soluzione in forma chiusa, ma siccome i coefficienti
sono variabili, è ...
Salve a tutti.
Sarà l'ora ma sto cercando di capire (invano) il teorema che mi dice che una funzione continua è misurabile. Vi dico quale è il mio problema.
Nel libro c'è scritta la seguente:
Ogni funzione $ f:E sube R^n->R $ continua è misurabile. Ciò segue dal fatto che, $ AA tinR $ l'insieme $ E={ x in X:f(x)>t } $ è un aperto, quindi misurabile: infatti, se $ f(x')>t $ , per il teorema della permanenza del segno esiste un intorno di $ x' $ tale che $ f(x)>t $ e ...
ciao a tutti!! nella dimostrazione del teorema di brouwer per i punti fissi mi sono ritrovata davanti qst pezzo di dimostrazione che nn m è molto chiara... bisogna dimostrare che una data funzione $f_t = x + t f_a(x)$ è suriettiva dove:
$f_t :A \rightarrow A_t$, $A_t = \{ x \in R^n : 1/2 sqrt(1+t^2) \leq ||x|| \leq 3/2 sqrt(1+t^2) \}$ e $ A = { x \in R^n : 1/2 \leq ||x|| \leq 3/2 \}$ Inoltre $ f_a :A \rightarrow R^n $ è definita mediante la legge $f_a(x) = ||x||f(\frac{x}{||x||})$ con f funzione del teorema dalla palla unitaria in se.
tra le ipotesi abbiamo anche che $|t|< 1/3$.
La linea della ...
devo calcolare questo integrale con un errore inferiore a $10^-2$
$int_(0)^(pi/2) (1-cosx)/x dx$
cos x=$sum_(n=0)^(+oo) (-1)^n x^(2n)/((2n)!)$
e quindi posso scrivere$ (1-cosx)/x=sum_(n=1)^(+oo) (-1)^(n+1) x^(2n-1)/((2n)!)$
$int_(0)^(pi/2) sum_(n=1)^(+oo) (-1)^(n+1) x^(2n-1)/((2n)!) dx=sum_(n=1)^(+oo) (-1)^(n+1) 1/((2n)!) int_(0)^(pi/2) x^(2n-1) dx$
volevo sapere se è giusto per proseguire il calcolo
Ciao ragazzi, mi aiutate a risolvere questi problemi, perfavore? Il primo e l'ultimo non ho idea di come si facciano, mentre per il secondo vi ho scritto quello che ho pensato sia lo svolgimento corretto.
1) Due persone possono arrivare in un determinato luogo, in un qualsiasi istante di un intervallo di tempo di lunghezza "t". Sia "x" l'istante di arrivo della prima persona e "y>x" l'istante di arrivo della seconda. Si individui l'insieme dei punti del piano xy formato da tutti gli eventi ...
Sia $f$ la funzione definita come:
$f(x) = \{( x),(x+2),(x-2):}$
rispettivamente se:
$x-=0_(mod 3)$
$x-=1_(mod 3)$
$x-=2_(mod 3)$
a) verificare che $f(x)$ sia ben definita
b) verificare se $f(x)$ è iniettiva, suriettiva
c) trovare $Im f$ e $kerf$
Riguardo il punto a) non riesco a capire come procedere perchè il concetto di "ben definito" lo associo ad una operazione binaria, "legata" ad una relazione di equivalenza, quando non dipende ...
22
11 mar 2012, 07:51
Ciao,
come da topic sto provando a risolvere alcuni esercizi, ma non essendo presenti soluzioni già svolte non so capire se sto procedendo bene, sareste così gentili da controllare (probabilmente ho scritto una vagonata di vaccate ma almeno una volta preso lo schiaffo posso capire come procedere..)?
ho il seguente sistema formato da 2 congruenze lineari:
$ 5x -= 40 (mod 10)$
$ x -= 50 (mod 7) $
Verifico la prima, il MCD(5,10) = 5 = d, se d | b allora la congruenza ammette d soluzioni,
Tramite ...
Ho questo problema e non riesco a trovarmi con il risultato:
http://tinypic.com/r/28l82uv/5
il mio svolgimento:
dato che c'è l'equilibrio scrivo lungo x:
$F_(13) + F_(23) + F_(31) = 0$
$F_(23) = - F_(13) -F_(31) $
ma $F_(31) =F_(13)$ e quindi:
$F_(23) = -2*F_(13)$
da cui ho:
$1/(4 pi epsilon_0) (q_2 q_3) /d^2 = - 1/(4 pi epsilon_0) (q_1 q_3)/(2*d^2)$
ottengo:
$q_1 = - 2*q_2$
il risultato dovrebbe essere: $q_1 = - 4*q_2$
quindi come se io non dovessi tener conto della simmetria di $F_(31) =F_(13)$ e considerarne solo uno...
non capisco dove è il problema!
Salve a tutti. Devo calcolare questi due integrali:
$ int_( )^( ) xsinx(cos^2x) dx$
$ int_( )^( ) (xtgx)/(cos^2x) dx$
ho provato per parti ... ma per il primo i calcoli sono lunghissimi, per il secondo ottengo un'identità.
Avete qualche suggerimento ?
Grazie anticipatamente
ciao a tutti volevo fare una domanda... se ho un'applicazione lineare $phi:RR^3 rarr$ $RR^3$ e mi capita che esce soltanto un autovalore appartenete a $RR$ e gli altri due appartenenti a $CC$. $phi$ è diagonalizzabile giusto?
Ciao, qualcuno mi potrebbe fare un po' di esempi di classi proprie ossia di classi che non sono insiemi oltre al paradosso di Russel? Grazie!
Si considerino i seguenti spostamenti effettuati da un punto materiale:
\(\displaystyle \Delta r1=(0.5m , 1.4m , 4.0m) \)
\(\displaystyle \Delta r2=(3.5m , 0.5m , 1,0m) \)
Si calcoli:
- le lunghezze di entrambi gli spostamenti;
- i tre angoli che ogni spostamento fa con i 3 assi cartesiani;
Io non riesco a capire che spostamento fa: devo considerare solo l'asse delle x? Ma se considero solo le x gli angoli individuati con gli assi cartesiani sono 90* rispetto all'asse y e 90*rispetto all' ...
La velocità è la derivata della legge oraria, e l'accellerazione è la derivata della velocità;
Ma data la mia legge oraria , per es quella di MRU o quella dell MRUA,
\(\displaystyle x(t)=x0 + vot \)
\(\displaystyle x(t)=x0+v0t+1/2at² \)
come faccio a derivare? Nel senso se sostituisco tutti i valori ho un numero, e la derivata di un numero è 0 se non sbaglio... come si fa?
Ciao, amici!
Il mio libro considerando le due trasformazioni lineari
$f:V->W$ e $g:W->Y$
dove lo spazio vettoriale $V$ ha come una delle basi l'$m$-upla di vettori $(\vecb_1 ,\vecb_2,...,\vecb_m)$, $W$ ha come una delle basi $(\vece_1 ,\vece_2,...,\vece_n)$ e una delle basi di $Y$ è $(\vech_1 ,\vech_2,...,\vech_l)$, e indicando con $B:RR^m->V$, $E:RR^n->W$ e $H:RR^l->Y$ le parametrizzazioni indotte dalle tre basi, dice che la matrice che ...
Salve, trovo delle difficoltà nello svolgere due limiti di successione, ieri stavo con un mio amico e c'abbiamo perso tutto il pomeriggio senza venirne a capo. Senza che vi mostro tutto il limite, vi dico che non siamo riusciti a capire perchè \(\displaystyle n!7^{n!}\) va più velocemente ad infinito di \(\displaystyle -5^{(n+1)!} \)
oppure, molto analogo \(\displaystyle n!7^{n(n+1)} \) è meno veloce di \(\displaystyle 4^{(n+1)!} \), scusate il disturbo
dovrei derivare due volte questa funzione \(\displaystyle f(x) = \sin (x*\left| x \right|) \)
grazie al suggerimento di prima so che si risolve cosi \(\displaystyle f(x) = \left\{ {_{\sin ( - x)\;\;se\,x < 0}^{\sin x\quad \quad se\,x \ge 0}} \right. \)
quindi \(\displaystyle f'(x) = \left\{ {_{ - \cos x\;\;\;\;\;se\,x < 0}^{\cos x\quad \quad se\,x \ge 0}} \right. \)
allora \(\displaystyle f''(x) = \left\{ {_{ - \sin x\;\;\;\;\;se\,x < 0}^{\sin x\quad \quad se\,x \ge 0}} \right. ...
Salve a tutti, eccomi alle prese con Fisica I ed ovviamente analisi
Prima di tutto scrivo la legge oraria del moto armonico semplice lungo un asse rettilineo per comodità
$x(t)=Asin(\omegat+ \phi)$
So che $v(t)=dx/dt$ quindi $v(t)=\omegaAcos(\omegat+\phi)$ e che $a(t)=(dv)/(dt)$ quindi $a(t)=-\omega^2Asin(\omegat+\phi)$
Posso riscrivere l'accelerazione come:
$a(t)=-\omega^2x(t)$
L'accelerazione è sempre proporzionale ed opposta allo spostamento dal centro dell'oscillazione ( condizione necessaria affinché sia un moto ...
Buonasera.
Risolvendo un'equazione complessa mi sono ritrovato con le seguenti soluzioni:
$z = 0$ e $ { ( x = cos(2y) ),( y - sin(2y) = 0 ):}$ (ove $z = x + i y$)
Ho qualche difficoltà di interpretazione. Dalla seconda equazione del sistema si può concludere che $y = cc(I)m (z)$ ha 3 soluzioni (graficamente...). $cc(I)m (z) = 0, y_1 , y_2$. Corrispondentemente, dalla prima equazione:
$ cc(R)e (z) = 1 , cos(2y_1) , cos(2 y_2)$.
Allora le soluzioni sono: $ { ( z_1 = 0),( z_2 = 1 ),( z_3 = cos(2 y_1) + i y_1 ),( z_4 = cos(2 y_2) + i y_2 ):}$
Giusto?
Lunedì ho sostenuto la prova scritta dell'esame in oggetto e ora settimana prossima dovrò sostenere la prova orale. Prima però vorrei sapere se e cosa ho sbagliato della prova.. (***Le risposte sotto questo post sono state fatte ad un quesito precedente***)
La funzione da studiare era questa:
$text{Stabilire per quali valori dei paramentri non negativi a,b la funzione:}$
$f(x)={((|x|^a*|y|^b)/(x^2+y^2),if (x;y)!=(0;0)),(0,if (x;y)=(0;0)):}$
$text{è continua nell'origine, derivabile nell'origine in ogni direzione, differenziabile nell'origine.}$
$text{Continuità:}$
Ho calcolato i limiti per gli assi cartesiani e per la retta $y=m*x$.
Se per gli assi cartesiani il risultato è ...