Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Sia dato l'equazione differenziale
$ u'(t)=t^3{1-cos(t^3u(t))} $
$ u(0)=4 $
ora, è facile trovare le soluzioni costanti intervallate di pi, ma quando il valore iniziale è negli intervalli per cui non passa una soluzione costante, cosa avviene della funzione? Ha dei flessi? Ha dei massimi o minimi?
Salve a tutti,
Ho delle grosse difficoltà con il seguente esercizio in cui bisogna calcore il momento risultante delle forze di inerzia rispetto al baricentro del disco della macina. Il prof. che ha fatto queste dispense scrive, come si può notare dalle immagini in basso, che essendo il disco in moto composto esso avrà nel moto assoluto una componente diretta lungo l'asse x (moto relativo) ed un'altra lungo l'asse z (nel moto di trascinamento da parte del braccio della macina).
Come si può ...

Buonasera! Avrei alcuni dubbi da chiarire in relazione al seguente esercizio.
Sono dati i seguenti vettori di $RR^4$: $u_1 = (1, 2, 1, 1)$, $u_2 = (0, 2, 0, 2)$, $u_3 = (1, 1, 0, 0)$, $u_4 = (1, 0, 0, 0)$
(a) provare che $(u_1, u_2, u_3, u_4)$ formano una base di $RR^4$;
(b) provare che esiste un solo endomorfismo $f$ di $RR^4$ tale che
$f(u_1) = u_4, f(u_2) = u_4, f(u_3) = u_3, f(u_4) = 2 u_4$
e trovare la matrice associata ad f rispetto alla base $(u_1, u_2, u_3, u_4)$;
(c) stabilire se f ...

Si chiede, date due rette $r, r'$ in $\mathbb{E}^3$ (in cui è fissato un riferimento ortonormale) di equazioni
$r \{(x + y - z = 1),(2x + y + z = 0):}$
$r' \{(x + y - 1 = 0),(z=1):}$
di determinare una retta $s$ tale che $r \bot s$ e $r' \bot s$.
Svolgimento:
1) Poiché $s$ deve essere ortogonale ad ambedue le rette date, la sua giacitura $T(s)$ deve essere l'intersezione dell'ortogonale delle due giaciture $T(r)$ e $T(r')$, cioè ...

Salve ragazzi, ho una domanda sui grafici di funzione di matlab.
Riesco a graficare una funzione utilizzando il comando plot in tale modo:
plot(-10:1:10, f(-10:1:10)) (avendo ovviamente definito prima la funzione f mediante comando inline)
Ora però ciò che non mi risulta chiaro è la rappresentazione grafica dell'integrale della funzione. C'è un modo per graficare la funzione integrale? Eventualmente è possibile rappresentarla mediante un grafico a barre?
Grazie!

Salve ragazzi avrei bisogno di una mano nel capire alcune cose su un esperienza di fluidodinamica fatta in laboratorio! Più precisamente si tratta dello studio della legge di svuotamento di un tubo attraverso dei capillari!
Su questo link c'è la spiegazione sull'esercitazione
Ora, come prima cosa ho registrato i dati, dopo aver inserito l'acqua nel tubo principale fino a un'altezza di 64 cm
La relazione che ci dice come varia la massa in funzione del tempo è:
[tex]m(t)=\rho S ...

x(t) = 2 j sin(2 pi 1/T t ) d(t) (d(t) e' la delta di dirac)
x(t) = 0
in quanto il prodotto della funzione sin per la delta e` pari alla delta per la funzione sin valutata in t=0
È CORRETTO?
GRAZIE.
Salve, ancora una volta mi ritrovo con un problema che ai più può sembrare banale.
Mi ritrovo con un esercizio che dice:
Lo sviluppo di MacLaurin di ordine 3 della funzione f(x) = $ (1 + sin x)/cos x $
Semplice è calcolarlo per il sinx e cosx perchè immediati. Non riesco però a capire come "portare su" il cosx.
Infatti, l'esercizio chiede proprio quello e infatti il risultato è:
$ 1 + x + x^2/2 + x^3/3 + o(x^3) $
Come posso riuscirci? Ho pensato di fare lo sviluppo di $ 1/cosx $ ma non so in che modo...

salve a tutti...
vorrei sapere come si continua lo svolgimento e se fino a dove mi son fermato ho ragionato bene...
y'=2x(y^2)
allora in primis pongo
dy/dx=2xy^2
(1/(y^2))dy=(2x)dx
che mi da
-1/y=x^2+c
poi non so come procedere per trovare y(x)...
chi sarebbe cosi' gentile da spiegarmelo?
grazie in anticipo

Ciao a tutti.
Mi sono trovato davanti un'applicazione $F: Z_56 -> Z_56$ tale che $F(a)=24a$per ogni a.
Devo stabilire se è iniettiva/suriettiva/omomorfismo.
è un omomorfismo, poichè f(a)+f(b)=f(a+b).
Ma per quanto riguarda l'iniettività, come posso fare? Devo utilizzare qualche ragionamento sui divisori dello zero?
Grazie in anticipo

Sia $f$ una funzione definita su $(0,1]->R$, con $\int_{0}^{1} f^2(x) dx<+infty$.
Cosa possiamo desumere sulla $f$:
a) è limitata
b) è illimitata
c) è continua
d) è derivabile
e) non è sempre integrabile
Il quesito mi ha destato qualche dubbio: sulle proprietà della $f$ nulla si dice nelle ipotesi, mentre si danno informazioni su un integrale in cui uno degli estremi vede la $f$ non definita
quindi ad occhio la $f$ non mi sembra ...

ho la seguente serie, devo studiarne la convergenza:
$\sum_{n=0}^oo (sin n -2cos(2n))/2^n$
può convergere perchè la successione è infinitesima. la serie non è a termini positivi, poichè si può avere $2cos(2n)>sin n$ uguale ad un numero negativo. pertanto applico il criterio dell'assoluta convergenza: se converge assolutamente, allora la serie converge. ora, come faccio a vedere se converge assolutamente? applico i criteri per le serie a termini positivi alla serie:
$\sum_{n=0}^oo |(sin n -2cos(2n))/2^n|$?? io ho fatto in questo modo, ...

Lo so che non dovrei semplicemente postare un problema ed aspettarmi che qualcuno me lo risolva,ma questa tipologia di problema è davvero importante e non so come risolverla..
Si consideri una sbarretta di lunghezza 1 m,massa 1 kg e resistenza 10 ohm,che collegata a due binari di resistenza trascurabile cade per effeto della gravità,partendo da ferma,in una zona in cui agisce un campo magnetico uniforme di intensità B=10 T diretto perpendicolarmente al piano del circuito.Determinare la velocità ...
Ho questo esercizio che mi chiede di disegnare il dominio: $ { (x,y) in R^2 : 0<=x<=2 , 0<=y<=2sqrt(x) , x-1<=y<=-x+3 }$
e calcolare l'integrale doppio: $ int int_ () 1/(1+x+y)^2 \ dx \ dy $
come posso calcolarlo? avevo pensato a dividerlo in due integrali, il primo con $0<=x<=2 , 0<=y<=2sqrt(x)$ e il secondo con
$0<=x<=2 , x-1<=y<=-x+3$ e poi sommarli...è giusto come procedimento?

Ciao a tutti!
Mi servirebbe una mano enorme da parte vostra...mi sto scervellando con questi 2 "semplici" esercizi che mi sono capitati all'esame di statistica...ovviamente, nonostante la buona volontà, la mia interpretazione non ha avuto esiti positivi...
Questi i quesiti:
1) Due amici, Piero e Franco, sono stati invitati ad una festa con altre 8 persone. Piove
e tutti hanno deposto il loro ombrello all’ingresso. Un black out improvviso impone
a tutti un’uscita frettolosa scegliendo a caso ...

Ho due disequazioni $(log_2(x)-1)/(log_2(x)-2)>=-1$ e $ (log_2(x)-1)/(log_2(x)-2)<=1 $. Chiamo A la prima e B la seconda. La A la risolvo facendo il m.c.m. e portando il secondo membro al primo, ottengo $ 2log_2(x) - 3 >=0 $; portando - 3 al secondo membro e dividendo i ambo i membri per 2 e cambiando il segno della disequazione, ottengo $ x>= 2sqrt(2) $. D'altronde la B, effettuando il m.c.m e portando il secondo membro al primo, ed eseguendo identici calcoli, diventa $ log_2(x)-1 - log_2 (x) + 2 <=0 $ che diventa $ 1 <=0$ non ...

Ciao, amici!
Mi sono trovato davanti ad un integrale che credevo di non difficilissima soluzione, ma il risultato da me ottenuto non coincide con quello dato dal mio libro... Si tratta di $\int\int\int_E z^2 "d"x"d"y"d"z$ dove $E$ è limitato dal piano $x=0$ e dal paraboloide $x=1-y^2-z^2$.
Chiamo $D$ il cerchio $y^2+z^2 \leq 1$ la cui circonferenza direi sia intersezione tra il paraboloide e il piano e direi quindi che l'integrale da calcolare sia
...

(Hey, un altro esercizio in cui ho capito l'errore scrivendo il post. Già che ci sono, invio.)
Vale a dire che nel calcolo degli equivalenti non devo usare alcunché di elaborato. Solo le leggi di Kirchhoff dirette. La consegna dice di calcolare la corrente che scorre su \(R\). Soluzione: \(i=0,05 A\).
img
\(e_{1}=2 V\)
\(e_{2}=5 V\)
\(e_{3}=10 V\)
\(R_{1}=10 \Omega\)
\(R_{2}=24 \Omega\)
\(R_{3}=80 \Omega\)
\(R_{4}=20 \Omega\)
\(R=12 \Omega\)
Ho prima semplificato la maglia di ...
metodo delle secanti:
salve a tutti! volevo sapere per quanto riguarda il metodo delle secanti cosa comporta la non convergenza del metodo.. basta che la funzione non sia nè concava nè convessa affinchè il metodo sia non convergente? questo cosa comporta sui punti iniziali e sulle iterazioni? grazie in anticipo!

Ciao ragazzi, ho svolto l'esercizio fino in fondo, ma alla fine non mi raccapezzo:
nb. ho usato $\Theta$ al posto del simbolo "composizione" e $J$ per il jacobiano
$f:R^2->R, a(t)=(sin(4t),e^(4t)), b(t)= (4-4cos(t),1+3t^2)$
So che $d/dt (f\Theta a)(0) = -1$ e che $d/dt (f\Theta b)(0) = 0$ .........Devo calcolare $\nablaf(0,1)$
premesso che $d/dt (f\Theta b)(0) = 0$ mi ha dato $J(b(0)) = ((0),(0))$ e che quindi non è utile ai nostri fini, espongo i miei ragionamenti:
$d/dt (f\Theta a) = \nablaf(a(t))J(a(t)) = \nablaf(a(t))((4cos(4t)),(4e^(4t))) = \nablaf(a(0))((4),(4)) = \nablaf(0,1)((4),(4))$
dovendo essere $\nablaf(0,1)((4),(4)) = -1$, ho scritto ...