Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Dimostrare che nessun primo della forma 4n + 3 si può scrivere nella forma a^2 + b^2 , con a e b interi.
Sulle dispense da cui studio c'è un aspetto della soluzione che non capisco:
Poiché dapprima si considera la somma a^2 + b^2 con a e b appartenenti a Z4 e si afferma che attraverso la "forza bruta" si riesce a dimostrare che a^2 + b^2 non è congruo a 3 mod 4 per a e b appartenenti a Z4 ( questa parte l ho capita) . Dopodiché si considera la somma a^2 + b^2 in Z e si afferma che a^2 + ...
Ciao a tutti! Ho due esercizi di stampo teorico che non riesco a risolvere purtroppo Ecco il testo:
"Si consideri $ mathbb(R^4) $ dotato del prodotto scalare usuale. Si dica se le seguenti affermazioni sono sempre vere oppure no fornendo una dimostrazione nel caso in cui siano sempre vere ed un controesempio nel caso in cui non lo siano.
(a) Se $S,T$ sono sottospazi tali che $S$ sia contenuto in $T$ allora $T^_|_$ è contenuto in ...
Buongiorno a tutti, vorrei se possibile un chiarimento sulla definzione di tensore.
Ho letto che un tensore $T$ è una funzione che prende in input $h$ covettori e $k$ vettori e restituisce un numero.
Perchè il tensore $T^{h/k}$ con $h=1$ e $k=0$ rappresenta un vettore mentre per $h=0$ e $k=1$ rappresenta un covettore ? (verrebbe da pensare il contrario).
grazie a tutti
Siano $A_1$ , $A_2$ .... $A_(n+1)$ insiemi aventi ciascuno n elementi, tali che ogni coppia di insiemi abbia esattamente un elemento in comune e che ogni elemento dell' unione appartenga ad esattamente 2 insiemi. Per quali valori di n è possibile colorare con 2 colori gli elementi dell' unione in modo che ogni insieme possegga un ugual numero di elementi dei due colori?
Se ho capito bene ciascun elemento deve appartenere ad esattamente 3 insiemi... ma non so ...
Salve ragazzi,
vi scrivo perché avrei bisogno di una mano nella risoluzione di un limite tramite lo sviluppo di MacLaurin.
Il limite è $ \lim_{x\to0}{\frac{2^{cosx}-2}{xsenx}}$ e dovrebbe fare $-\log2$.
Io l'ho risolto nel seguente modo (ma evidentemente c'è qualcosa che non va!).
Lo sviluppo del denominatore è: [size=150] $x*senx=x*[x+o(x)]= x^{2}+o(x^{2})$[/size]
Lo sviluppo del numeratore dovrebbe essere:
[size=150]$2^{cosx}-2= 2^{[1-\frac{x^{2}}{2}+o(x^{2})]}-2 = 2* 2^{[-\frac{x^{2}}{2}+o(x^{2})]}-2=$[/size]
(sfruttando la proprietà secondo cui $x^{\alpha }=e^{\log_{e}x^{\alpha }}=e^{\alpha *\log_{e}x}$, ottengo) ...
Vorrei sapere se ho capito bene il ragionamento per la risoluzione del seguente problema.
Tre cariche puntiformi positive uguali sono disposte ai vertici di un triangolo equilatero di lato $d = 10 cm$. Una carica vale $2q$, posta sull'asse $y$, e le altre due valgono rispettivamente $-q$, poste entrambe sull'asse $x$, e sapendo che $q = 1.0 * 10^(-6) C$. Sappiamo che il momento di dipolo del sistema vale $\vec p = \hat j * sqrt(3) * 10^(-7)$. Supponiamo ora ...
Per ogni $a \in \mathbb{C}$, dimostrare l'esistenza di una radice $\bar{z}$ dell'equazione
\[ az^2-z+1 = 0 \]
che soddisfa la condizione
$| \bar{z} -1 | \leq 1$ .
(dispongo di una mia soluzione)
grazie risolto
Salve a tutti,
Ho cercato di risolvere questo esercizio in molti modi ma non riesco a dimostrare il parallelismo tra a retta e il piano.
Vi allego la foto, mi auguro riusciate ad aiutarmi.
Grazie a tutti!
Salve a tutti,
sto affrontando l'argomento della convergenza degli integrali impropri e mi sono imbattuto in questo integrale:
[tex]\int_{1}^{+ \infty}{\frac{\sqrt{1+x}-\sqrt{x}}{x}*e^{-\alpha * x} dx }[/tex]
e devo trovare gli alpha tali per cui l'integrale converge.
Poichè "prima dell'infinito" (scusate l'espressione pessima) non ci sono problemi, mi sono concentrato sull'infinito e ho "splittato" l'integrale in:
A) [tex]\int_{1}^{+ \infty}{\frac{\sqrt{1+x}}{x}*e^{-\alpha * x} dx ...
Ciao
Devo dimostrare questa proposizione:
Siano: $V$ un $\mathbb{K}-$spazio vettoriale, $B$ base di $V$, $f \in End(V)$, $A = M_B(f)$(matrice associata a $f$ rispetto a $B$) e $p(t) \in \mathbb{K}[t]$. Allora $p(A) = M_B(p(f))$
Ho provato così:
Supponiamo che $dim V = n$, $p(t) = t^na_n + ... + ta_1 + a_0 \in \mathbb{K[t]}$, $B = {v_1, ..., v_n}$ e sia $[ ]_B$ l'isomorfismo fra $V$ e $\mathbb{K^n}$ che associa ad ...
Ciao a tutti ragazzi, ho questo integrale:
$ int (x^3)/(x^2+4x+3) dx $
per risolverlo ho fatto i seguenti passaggi:
1. essendo il grado del numeratore maggiore rispetto al denominatore, ho provveduto a fare la divisione di polinomi, potendo riscrivere l'integrale in questo modo: $ int x-4+(13x+12)/(x^2+4x+3) dx $
2. fattorizzo il denominatore facendolo diventare così: $ (x+2)^2-1 $
3. scrivo $ (13x+12)/(x^2+4x+3) = A/((x+2)-1)+B/((x+2)^2-1) $ risolvendo il sistema troverò che $A = 13,B=-14$
4. in virtù dei passi precedenti posso ...
Ciao a tutti, è da qualche giorno che sto impazzendo con questo esercizio di geometria. A me sembra che manchi un dato fondamentale: il punto di tangenza tra la retta e la sfera, senza il quale non riesco a risolvere l'esercizio.
Vi propongo il testo:
"Determinare le equazioni delle rette passanti per il punto$ M = (0, 0, 1) $ , parallele al piano $ π: x+z = 0 $ e tangenti alla sfera di centro $ C = (0,4,2) $ e raggio pari a 2."
Io so che una retta nello spazio è individuata da due ...
buongiorno,
se possibile desidererei una conferma sulla risoluzione del seguente es.:
Testo:
Un corpo puntiforme di massa m = 4 kg pende verticalmente essendo attaccato all’estremità inferiore di una molla di costante elastica $k = 196 N/m$ e lunghezza a riposo $l_0 = 0.6 m$, disposta verticalmente e avente l’estremità superiore ancorata al punto O del soffitto della cabina di un ascensore.
Inizialmente l’ascensore è in quiete e il corpo si trova in condizioni di equilibrio ...
data $A= ( ( 6 , -9 ),( 4 , -6 ) ) $
determinare il sottospazio delle matrici X di $R^(2,2)$ tali che $AX=XA$
ho fatto $ ( ( 6 , -9 ),( 4 , -6 ) ) ( ( a , b ),( c , d ) )= ( ( a , b ),( c , d ) ) ( ( 6 , -9 ),( 4 , -6 ) ) $
sviluppato il prodotto risolto il sistema lineare e trovato d=0, a in relazione con b e c tramite un parametro libero s
in modo che il sottospazio alla fine risulta generato da $ {(3s,-9/4s,s,0)} $ con dimensione uno
ora essendo che il sistema lineare a due righe proporzionali è ragionevole che il rango sia 3 e che il parametro libero sia uno e che ...
Avrei bisogno di chiarimenti per quanto riguarda un argomento... Siano $\phi$ e $\psi$ due prodotti scalari, di cui $\phi$ definito positivo. Allora prendo $(V,\phi)$ spazio euclideo, e considero le matrici indotte dai due prodotti scalri nella base (per esempio) canonica. Avrò allora due matrici simmetriche $A=M_{can}(\phi)$ e $B=M_{can}(\psi)$ dove can indica la base canonica. Siccome sono in uno spazio euclideo e $B$ è simmetrica, per il ...
data la sfera $ \Sigma : x^2+y^2+z^2-2x+y = 0 $ e la retta ( data come intersezione di due piani) $ r : 2x+z−5=0 ; y + z = 0 $ trovare l'equazione dei piani tangenti a $ \Sigma $ che contengono la retta $ r$
Sembra un esercizio classico ma non mi torna!
Ho ragionato così: considero il fascio di piani $ F: 2x+z−5 +k( y + z) = 0 $ impongo che la distanza del centro della sfera $(1,-frac{1}{2},0)$ al generico piano del fascio, sia uguale al raggio della sfera: $frac{sqrt(5)}{4}$.
Ma mi escono numeri assurdi.
scusate ma non è un controsenso che due vettori paralleli siano dipendenti
bar(v) t + bar(u) g = 0 da cui bar(v) = -bar(u)(g/t)
ed allo stesso tempo perché due vettori siano paralleli devono essere proporzionali?
bar(v) t/g = bar(u) da cui bar(v) = bar(u)(g/t)
Come faccio a trovare per quali valori di $h$ il vettore $v$ appartiene a $Imf$.
Ciao
Sto cercando di risolvere questo esercizio:
Sia $X$ lo spazio delle successioni reali, prese $x=(x_n)$, $y=(y_n)$ in $X$ definiamo
$$
d(x,y) = \sum_{k=1}^\infty \frac{1}{k!} \frac{|y_k-x_k|}{1+|y_k-x_k|}.
$$
Provare che $d$ è una distanza su $X$ non indotta da alcuna norma.
Non ho avuto problemi a dimostrare che per ogni $x,y \in X$:
1) $d(x,y) \geq 0$
2) ...