Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
mashiro1
ciao a tutti, sono alle prese con un problema di calcolo di massimi e minimi di una funzione in un insieme. il problema recita: trovare i massimi e minimi della funzione $f(x,y)=xy+log(1/2+x^2+y^2)$ nell'insieme $A:={(x,y) in \RR^2 | x^2+y^2<=2}$ per risolvere questo problema pongo uguali a zero le componenti del gradiente della funzione $(partial f)/(partial x)=y+(2x)/(1/2+x^2+y^2)=0$ e analogamente $(partial f)/(partial y)=x+(2y)/(1/2+x^2+y^2)=0$ adesso in teoria devo trovare i punti critici e vedere poi di fare l'hessiano conquello che trovo, giusto? ma come ...
9
14 giu 2009, 20:07

Yuuki Kuran
Avrei un problema con questa funzione: $f(x)=(x-3)/(x+1)+log|1+x|$ si chiede il numero dei punti, qualora esistano, in cui la funzione si annulla e poi di capire se c'è discontinuità ed in caso affermativo di che tipo... Per quanto riguarda i punti in cui si annulla ho cercato di disegnare il grafico del logaritmo tenendo conto del valore assoluto e poi ho disegnato l'iperbole per la frazione... da lì le due funzioni si incontrano il due punti e quindi direi che $x$ si annulla per ...

Yuuki Kuran
Il problema è che non ho capito il perché della soluzione di questo problema: Si determini l'area della regione compresa tra i grafici delle funzioni $f(x)=sinx$ e $g(x)=cosx$ nell'intervallo $(-pi/2,pi/2)$ ; ovvero l'area di $A={(x,y) in RR^2:-pi/2<=x<=pi/2; min(f(x),g(x))<=y<=max(f(x),g(x))}$ La soluzione è $2sqrt2$ ma non penso di aver proprio capito il perché , mi spiego: Prima ho calcolato l'area nel primo quadrante facendo: $\int_0^(pi/4)cosx dx-int_0^(pi/4)sin x dx=sqrt2-1$ e $\int_0^(pi/4)sinx dx= -sqrt2/2+1$ a questo punto mi è bastato moltiplicare ...

aleas-votailprof
salve a tutti ho un problema con un esercizio..spero in un vostro aiuto grazie anticipatamente.. allora ho un piano 4x+2y+z+1=0 dovrei trovare i vettori di modulo (radice di 2) paralleli a questo piano, e ortogonali all'asse delle ascisse. come procedo???

robb12
Ciao a tutti, mi sto imbattendo nello studio dei massimi e minimi vincolati di una funzione a due variabili. In generale sappiamo che abbiamo la funzione obiettivo, cioè $z=f(x,y)$ e l'equazione del vincolo che è $\varphi (x,y)=0$ Cercare questi punti stazionari di fatto significa fare un sistema fra queste due curve e cercarli nella nuova funzione che ottengo e quindi se dall'equazione del vincolo riesco a esprimere una variabile in funzione dell'altra, per esempio ...
10
12 giu 2009, 10:24

aleas-votailprof
Salve a tutti avrei un piccolo problemino sono rimasto conun esercizio incompleto, scrivo il testo di seguito, se è possibile aiutatemi grazie. calcolare, se è possibile, la matrice inversa di A=$((1,2,1),(-1,5,-1),(0,3,2))$ detto inoltre L:$R^3$ $rarr$ $R^3$ l'operatore lineare associato alla matrice A, determinare Li, Lj ed Lk Ho trovato la matrice inversa. ma non riesco a capire come si trovano gli operatori lineari. mi servirebbe capire solo il ...

pingpong2
Buona domenica a tutti sto cercando di dimostrare che esistono infinti endomorfismi diagonalizzabili su $RR^4$ tali che $ f(RR^4)=<(-1,1,1,1) , (1,0,2,3)>$ e sia $Spec(f)={1,2,0}$ . Come posso farlo? fino ad ora sono riuscito a trovarne uno, quello associato alla seguente matrice: $((0,-1,1,0),(0,1,0,0),(0,1,2,0),(0,1,3,0))$ grazie in anticipo per l'eventuale risposta, buon pranzo a tutti! G PS: ho già dimostrato che "se esistono, allora sono diagonalizzabili". il mio problema consiste nel dimostrare che ne ...
1
14 giu 2009, 13:05

zoritativo
Dovrei svolgere il seguente esercizio: Sviluppare in serie di Fourier la f.ne DISPARI 4-periodica, che nell'intervallo [0,2] coincide con f(x) = $x-1/2x^2$ Come faccio a dedurre la funzione prolungamento per poi trovare la serie associata?Come rendo questa f.ne dispari? Grazie ciao!
4
14 giu 2009, 10:56

indovina
Sto facendo questo problema, ma il risultato non mi viene. Un cilindro e un cono retti sono equivalenti e i loro raggi sono congruenti e misurano $r$. Calcolarre la misura del volume dei due solidi nel caso in cui risulta minima la differenza tra le loro superfici totali. Il mio ragionamento. Trovo le due superfici totali che sono: $S_t ("cilindro")=2pi*r*h+2*pi*r^2$ $S_t ("cono")=pi*r^2+pi*r*a$ Faccio la differenza tra superfice cilindro e quella del cono e trovarci la derivata prima dove ...
1
8 giu 2009, 17:07

snippox
Dovrei risolvere queste somme: $sum_{k=0}^{m}((n),( k)) (-1)^k$ con 0

rikytoro1
Ciao a tutti! ho un problema su trovare il grado di $Q(sqrt(7+(sqrt3)))$...io ho osservato che $sqrt(7+sqrt(3))$ è algebrico e tale estnsione è formata da tutte le espressioni polinomiali di $sqrt(7+sqrt(3))$...che una base è ${1,sqrt(7+sqrt(3))}$...e che quindi il grado è due...ma è sbagliato...come posso fare?..grazie!

visind
$\lim_{x \to \infty}e^(1/x)$ = $1$ Si risolve per caso... $e^(1/x)$ = $1 + M$ $e^(1/x)$ = $e^(1 + M)$ $x$ = $1/(1 + M)$ Sbagliato vero? Avrò commesso qualche ORRORE matematico....
3
14 giu 2009, 18:16

RodEz
Ciao a tutti,ho un problema con il massimo e il minimo tra due variabili aleatorie.Ecco il testo: Un collegamento internet può passare attraverso due siti. Il sistema sceglie automaticamente di passare attraverso il sito che offre la connessione per primo. Il tempo necessario per stabilire la connessione con il sito A è descritto da una variabile aleatoria TA con legge(assolutamente continua) uniforme intervallo [0, 20] secondi, mentre il tempo ...
3
14 giu 2009, 11:08

visind
Eccovi l'esercizio Dunque il blocco principale identificato è questo $1-(1/x^2)$ = $(x+1)/(2*x)$ Dopo aver dimostrato l'ugaglianza per p(2), non dovremmo arrivare a dimostrare ciò? $(x+1)/(2*x)$ + $1-(1/(2x+x^2+1))$ = $(x+2)/(2x+1)$ ??
6
14 giu 2009, 16:21

piccola881
come si procede per calcolare questo limite?non so come agire in presenza di $\log(e^x-2)$ $\lim_{x \to \log2^+}2x-1-log(e^x-2)$
6
14 giu 2009, 16:44

thedarkhero
Sia ${A_i:i in I}$ una famiglia di eventi indipendenti, $I'subeI$, e definiamo $B_i={(A_i^C,if i in I),(A_i,if i in I\I'):}$. Allora ${B_i:i in I}$ è una famiglia di eventi indipendenti. Dimostrazione Sia $JsubI$ finito e sia $J'=JnnI'$. Supponiamo $J={j_1,...,j_m}$ e $J'={j_1,...,j_k}$ con k

Fioravante Patrone1
http://www.repubblica.it/2009/02/sezion ... messi.html ... Vedere Messi significa osservare qualcosa che va oltre il calcio e coincide con la bellezza stessa. Qualcosa di simile a uno slancio, quasi un brivido di consapevolezza, un'epifania che permette a chi è lì, a vederlo sgambettare e giocare con la palla, di non riuscire più a percepire alcuna separazione tra sé e lo spettacolo cui sta assistendo, di confondersi pienamente con ciò che vede, tanto da sentirsi tutt'uno con quel movimento diseguale ma armonico. In questo le ...

Sk_Anonymous
Siano $X,Y$ due variabili casuali univariate. Devo dimostrare che: $E((Y-mu_Y(X))^2)<=E((Y-g(X))^2)$ essendo $g$ una funzione misurabile e $mu_Y(x)=E(Y|X=x)$. Qualche idea?

DoraDora1
Ciao! Ho un problema riguardo alla ricerca di soluzioni non prolungabili di problemi di Cauchy relativi a equazioni differenziali del primo ordine tramite il metodo di separazione delle variabili. In base a questo metodo riesco a determinare una soluzione locale del problema, però vorrei capire come devo ragionare in generale per capire qual è il dominio della soluzione non prolungabile. In particolare il mio problema di Cauchy è: $y'=2tsqrt(1-y^2)$ $y(0)=1/2$ Risolvendo con ...
7
13 giu 2009, 21:42

angel_j88
domanda stupida, date 2 rette in forma ridotta : r: x=-y,z=2y+1 ed s: x=1,z=y+1 trovare se esiste il punto di intersezione,grazie a tutti ciao
4
14 giu 2009, 12:36