Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve, il professore ci ha dato da fare questo esercizio per casa.
Dopo svariati conti sono arrivato alla forma per $\phi = \sqrt{\frac{2\pi}{F}} \exp (\frac{iEp}{\hbar F} -\frac{i\hbarp^3}{6mF})e^{i\alpha}$, dove $\alpha$ è una fase arbitraria. Il punto due mi dice di dimostrare che $\int dE \bar{\psi(x)} \psi(y) = \delta(x-y)$, dove $\psi$ è la trasformata definita all'inizio dell'esercizio. Però in questo punto mi blocco, per il semplice motivo che dovrei fare un integrale in $dE$ di 2 integrali in $dp$ di un esponenziale con un ...
Ciao ragazzi mi aiutate per favore a scrivere questa funzione in matlab, la funzione è la seguente:
$ y=a_0+a_1*x+a_2*x^2+a_3*x^3+...+a_n*x^n $
La $x$ è definita attraverso un linspace poi ho costruito il vettore colonna $a_n$ attraverso un ciclo for però non saprei come moltiplicare le varie potenze di $x$ con i vari coefficienti $a_n$.
Forse è banale ma io non sono molto bravo con matlab, sapreste aiutarmi?
Grazie mille in anticipo.
Saluti.
buonasera a tutti, vi scrivo per un dubbio...purtroppo non sono riuscito a seguire una lezione in università e ho perso una spiegazione, oltretutto sul libro che ho a disposizione non trovo nulla, potete darmi una mano?
il problema è risolvere un'equazione di diffusione con condizioni di Dirichlet omogenee e con dato iniziale discontinuo ad esempio $f(x)=x*(pi/2-x)$ per $0<=x<=pi/2$ e $f(x)=0$ per $pi/2<=x<=pi$
dato che i coefficienti della soluzione dell'equazione di ...
1) La funzione $f(x)=x^\frac{3}{5}(x+1)^\frac{2}{5}$ non dovrebbe essere definita su tutto R? Dopotutto scrivendo in forma di radicale si ottiene
$f(x)=\root(5)(x^3(x+1)^2)$ e la radice quinta esiste per QUALSIASI numero reale!
Il dominio dunque dovrebbe essere tutto R! E invece no, per curiosità ho tracciato il grafico della funzione per mezzo di piu di un programmino, e con sorpresa mi sono accorto che per x
Salve a tutti.
Stavo risolvendo questo limite in questo modo:
$ lim_(x-> +oo) sqrt(2x+x^2) - x = lim_(x-> +oo) sqrt(x^2(1+(2x)/x^2)) -x = x-x = 0 $
Eppure la soluzione è "1". Dove sta il mio errore?
sia v = v(1)........v(n) un sistema di vettori di V
Per determinare una base di Lin(v(1)......v(n) ) sfrutto il seguente teorema:
Sia B una matrice ridotta per righe e ottenuta da (t)A con il procedimento di riduzione di Gauss-Jordan. Allora una base di Lin(v(1)......v(n) ) è costituita dai vettori a=a(i,1)b(1)+.....a(i,n)b(n) ,........., w=w(p,1)b(1)+........w(p,n)b(n) dove i,....p sono gli indici delle righe non nulle di B
A è la matrice delle componenti di v rispetto alla base b le cui ...
Ciao ragazzi...metto un esercizio risolto da me sulle permutazioni per capire se l'ho svolto in maniera corretta e per aiutare, nel caso qualcuno ne abbia bisogno in futuro nella risoluzione di questa tipologia di esercizi....allora, date:
$ f = ( ( 1 2 3 4 5 6 7 8 9 ),( 3 2 8 4 9 6 7 1 5 ) ) $
$ g = ( ( 1 2 3 4 5 6 7 8 9 ),( 1 6 8 7 5 9 4 3 2 ) ) $
1) scrivere f nel prodotto di cicli disgiunti, determinare l'ordine, la classe precisando se sia o meno $in A_9$
2) determinare $h = f°g$, l'ordine di h nel gruppo $(S_9, °)$ e la sua ...
Ciao a tutti,
Ho problemi per calcolare le derivate parziali, ho le regole ma non ci riesco lo stesso.
Per esempio,
Ho una funzione
$u(x_1,x_2)= 4sqrt{x_1}+x_2$
devo calcolare
$(U'x_1)/(U'x_2)$
sapendo che
$U'x_1= (delu(x_1,x_2))/(delx_1)$
$U'x_2= (delu(x_1,x_2))/(delx_2)$
Come posso risolvere? Mi potete spiegare passo passo?
Grazie.
salve a tutti,
ho un problema con un argomento di teoria dei segnali:
dato un segnale di energia, ovvero a quadrato sommabile:
$ int_(-oo )^(+oo ) x(t)dt < +oo $
allora
$ lim_(t -> pmoo) [tx^2(t)] = 0 $
e mi sfugge il motivo!
cioè che il limite per x^2 che tende a più o meno infinito faccia zero va bene, perchè sennò l'integrale non convergerebbe, ma chi mi dice che se lo moltiplico per t la relazione vale ancora??
Supponiamo di avere un sistema quantistico [tex]\mathfrak{E}_{\rm{qm}}[/tex] il cui spazio degli stati sia [tex]L^2(\mathbb{R}^n)[/tex] e in cui siano definiti gli operatori
[*:7yqjml6n]posizione: [tex]\hat{q}_j\psi=q_j\psi(q_1\ldots q_n)[/tex]; [/*:m:7yqjml6n]
[*:7yqjml6n]momento: [tex]\hat{p}_j \psi= -i \hbar \frac{\partial}{\partial q_j}\psi[/tex].[/*:m:7yqjml6n][/list:u:7yqjml6n]
Ogni funzione d'onda la pensiamo come [tex]\psi=\psi(q_1 \ldots q_n)[/tex] (sto escludendo la dipendenza dal ...
Salve!
Dovrei trovare l energia di ionizzazione dell'idrogeno ovvero il lavoro minimo da compiere sull elettrone per far si che raggiunga una distanza infinita dal protone. Ho usato la formula L=-kq1q2/d ma mi viene un risultato doppio rispetto alla soluzione. Per quale motivo?
Grazie!
Dato il processo aleatorio $X(t)=A$ con $A$ variabile aleatoria continua ed uniformemente distribuita in (-1,1) se ne calcoli la PSD.
allora ho pensato di calcolare la funzione di autocorrelazione e poi farne la trasformata di Fourier...è la strada giusta?inoltre ho trovato che la funzione di autocorrelazione varia a seconda degli istanti di tempo considerati, può essere 0 se si scelgono istanti di tempo in intervalli diversi (quindi in cui A assume valori diversi) ...
ho da poco iniziato lo studio degli integrali in analisi complessa.quando mi trovo davanti un integrale devo priva vedere se la funzione $f$ è sommabile in modo da sapere a priori se l'integrale che calcolerò in valore principale corrisponde all'integrale di Lebesgue.
per provare che essa è sommabile devo calcolarmi il limite $lim_(x to+oo) x^alphaf(x)=l in R$ con $alpha>1$.
esatto?
datemi un input perchp non ho molta dimestichezza con l'argomento... ho una funzione [tex]e^{-x^2}[/tex] che devo sviluppare in serie di taylor. Io da quello che ricordo ho lo sviluppo di [tex]e^x[/tex] e non di un esponenziale con l'esponente negativo..
mia sorella che fa l'animatrice all'oratorio mi ha sottoposto questo problema che non sono riuscito a risolvere in quanto non trovando un metodo razionale e matematico per analizzarlo ho dovuto procedere a tentativi..
ho dieci squadre e sei giochi nei quali le squadre si devono affrontare una contro l'altra in una sfida.
in sei tornate le squadre non devono mai affrontarsi due volte (la squadra 1 può affrontare la 2 in un solo caso non in due) e tutte le squadre devono fare tutti i sei ...
ciao a tutti... non riesco a capire perchè se in una data regione dello spazio il potenziale è costante allora il campo elettrico è nullo....
ciao ciao grazie 1000 in anticipo
salve a tutti,ho un esercizio di questo genere:
supposta la massa costante da cui la densità risulta uguale a 1 ho una figura sull'asse $ xy $ che si presenta composta così :
http://img593.imageshack.us/img593/4531/29348605.jpg
ora il mio problema è determinare il tensore d'inerzia rispetto al polo $O$ posto in basso a sinistra.
da qui ho ragionato così:
1) ho ricavato la posizione del baricentro $ (2.5,1.5)$
2) ho scomposto la figura in due rettangoli,partendo da sinistra il primo di ...
Ho la seguente successione esatta corta: [tex]0\to A\to B\to C\to 0[/tex]. Chiamo gli omomorfismi [tex]f:A\to B[/tex] e [tex]g :B\to C[/tex]. Inoltre so per ipotesi che [tex]A[/tex] non è il gruppo banale. Devo dimostrare che [tex]g[/tex] non è necessariamente un isomorfismo. Io ho ragionato così:
Sono partito sfruttando l'esattezza della successione. Facilmente si trova che [tex]f[/tex] è iniettiva e [tex]g[/tex] suriettiva. Fatto ciò ho notato che essendo [tex]Ker(f)=0[/tex] ed ...
Ciao ragazzi, ho un problema con determinare l'inverso
data la struttura $(ZZ, *)$ con * definita da $x*y=x+y+2$ devo determinare se è associativa e se ha elemento neutro.
Con l'associatività non ho problemi, con l'elemento neutro nemmeno ($e=-2$) ma non riesco a capire la storia dell'inverso
mi chiede di determinare gli elementi di $ZZ$ che hanno inverso rispetto alla legge *. In poche parole l'inverso di x non dovrebbe essere e? allo stesso modo posso ...
Propongo un esercizio in questa sezione, giacché gli ingegneri sono più pratici di queste cose (o almeno dovrebbero... ).
Non è particolarmente difficile, però c'è bisogno di creatività.
***
Esercizio:
Risolvere, usando la trasformata di Laplace, il seguente problema di Cauchy in [tex]$[0,+\infty[$[/tex]:
[tex]$\begin{cases} y^{\prime \prime} (t) +\pi^2 y(t) =f(t) \\<br />
y(0)=1 \\<br />
y^\prime (0)=0\end{cases}$[/tex]
ove:
[tex]$f(t) =(\sin \pi t)^+ =\begin{cases} \sin \pi t &\text{, se $\sin \pi t\geq 0$} \\ 0 &\text{, se $\sin \pi t