Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Andrew Ryan
Mi trovo alle prese con questa serie e devo dire se converge o diverge: $ sum_(n = 1)^(oo) (n^2 + 3 )/(n!) $ utilizzando il criterio del rapporto (D'Alembert) ottengo: $ lim_(x->oo) ((n^2 + 1) + 3 )/((n+1)!) * (n!)/(n^2 + 3 ) $ è corretto? successivamente,quando devo semplificare la funzione mi trovo in difficoltà con il fattoriale,come posso eliminarlo? c'è qualche regola che lo permette? magari un diverso modo di scriverlo che faciliti poi l'eliminazione

Taraste
Ragazzi ho qualche difficoltà con il dominio di questa funzione: $f(x)=$x$*$e^[-1/|x-1|]$$ Dato che la funzione esp. è sempre positiva devo porre solo il denominatore dell'esponente diverso da zero giusto? che risulta facendo |x-1|$!=$0 ?
5
6 lug 2012, 14:17

Bisneff
Salve a todos E' da un po' che non mi destreggio in queste pagine. Volevo sottoporvi due problemi che ancora non son riuscito a risolvere di mio. Determinare il volume del solido $D = {(x, y, z) ∈ R^3 : (x −sqrt(3))^2 + y^2 + z^2 ≤ 1, x^2 ≤ 3(y^2 + z^2 )}.$ Non sono un drago sugli integrali tripli, ma mi è parso di capire che il volume richiesto è quello di una sfera centrata in $sqrt3$ che viene bucata da un cono che parte dall'orgine e la interseca fino all' "equatore". Quindi basterebbe sommare metà del volume della sfera con ...
1
5 lug 2012, 20:31

ciruz86
Ciao a tutti, qualcuno mi dire se la soluzione di questo limite è giusta e se, secondo voi, bisogna approfondire alcuni passaggi. Ecco il limite: $lim_{x ->oo} ((5^n+3^n)/(2^n+4^n))$ La mia soluzione: $lim_{x ->oo} ((5^n(1+3^n/5^n))/(4^n(2^n/4^n+1)))=oo$ in quanto: $3^n/5^n e 2^n/4^n$ tendono a zero
7
2 lug 2012, 15:09

enzo_87
ciao a tutti, vorrei chiedervi come si può risolvere la soluzione particolare di questo problema di caucy: $ y''+4y'+5y = (26x + 36)e^(3x) $ $ y(0) = 2 $ $ y'(0) = 4 $ sono arrivato a trovare $ y(x) = e^(-2x) (C1 sen x + C2 con x) $ ma ora non so come trattare il polinomio per la soluzione particolare
9
5 lug 2012, 16:45

Andrew Ryan
Ho questa serie: $ sum_(n= 1)^(infty) (2n)/(3 + 4sqrt(n)) $ devo dire se converge o diverge. Ho utilizzato il criterio del rapporto però mi esce un calcolo di grandi dimensioni ,sto pensando che forse sbaglio nello scrivere il limite iniziale: $ lim_(n->infty) (2(n+1))/(3+4sqrt(n+1)) * (3+4sqrt(n))/(2n) $ è corretto? nel caso lo sia,perchè svolgendo i calcoli mi trovo sempre nel caso $ infty/infty $ ?

frenky46
Salve ragazzi qualcuno potrebbe darmi una mano con il seguente programma ? purtroppo non ho capito un gran che dei file ad accesso sequenziale e sono in alto mare. Ho provato a scrivere qualcosa ma non credo vada bene : Registrare su un file sequenziale un elenco degli studenti del corso riportante il cognome, nome, numero di matricola, numero di giorni di presenza al corso per ciascuno di essi, voto ottenuto in sede di esame. Una volta riempito il file, leggerne il ...
19
29 giu 2012, 18:36

Musicam
Salve..allora ho la matrice A e la devo diagonalizzare al variare di t..mi blocco quando calcolo il determinante del polinomio caratteristico perchè c'è quella t che da fastidio e soprattutto quando devo usare ruffini per determinarmi le soluzioni.. -1 0 0 6 3 (t-1) -2 -1 -1 mi aiutate?
9
5 lug 2012, 19:38

claudio_p88
ho la seguente funzione \(\displaystyle f(z) = \frac{1}{1+z^4} \) ho pensato di procedere in questo modo per calcolare le singolarità, scompongo \(\displaystyle 1+z^4 = (1-\sqrt{i}x)(1+\sqrt{i}x)(1+i\sqrt{i}x)(1-i\sqrt{i}x) \) e da qui mi ricavo \(\displaystyle z_1 = \frac{1}{\sqrt{i}} \) \(\displaystyle z_2 = -\frac{1}{\sqrt{i}} \) \(\displaystyle z_3 = \frac{-1}{i\sqrt{i}} \) \(\displaystyle z_4 = \frac{1}{i\sqrt{i}} \), premetto subito che so di aver commesso errore, in quanto il libro mi ...

lilengels
salve, stavo svolgendo questo esercizio e ho dei dubbi sulla ricerca di punti stazionari. la funzione è: \(\displaystyle x^2y^2 +x^4+2x^2y \) ho studiato il segno della funzione e mi risulta \(\displaystyle x^2+y^2+2y >= 0\) ovvvero una circonferenza. in seguito ho calcolato il gradiente da porre a 0 per la ricerca dei punti stazionari e ho ottenuto le derivate: \(\displaystyle 2xy^2 + 4x^3 + 4xy = 0 \) a sistema con \(\displaystyle 2x^2y + 2x^2= 0 \) risolvendo il sistema ho trovato 3 ...

Xavier310
Una sbarra omogenea di lunghezza L e massa m è inizialmente appoggiata orizzontalmente su un semi-cilindro di raggio R e massa M, come in figura. La distanza del punto iniziale di appoggio dal bordo della sbarra è d. La sbarra si muove senza strisciare sul semi-cilindro. Si assuma che la sbarra non si stacchi mai dal cilindro. Nell’ipotesi che il semi-cilindro sia mantenuto fermo, trovare per quale angolo di inclinazione rispetto all’orizzontale diverso da [tex]\pi/2[/tex] la ...

gio881
salve sto risolvendo questa serie $\sum_{N=1}^oo (-1)^n * ((n^(2) + logn) / (n^(3)))$ ponendo la serie in valore assoluto vedo che diverge , quindi calcolo la convergenza semplice con Leibiniz e qui cominciano i dubbi la formula dice che $a(n) >= a(n+1)$ lim di $n->oo$ = 0 allora la serie converge questo vuol dire che la funzione deve essere decrescente , quindi mi basta fare $ ((n^(2) + logn) / (n^(3))) >= ((n+1)^2 + log(n+1)) / ((n+1)^3)$ e da questo devo vedere che la prima funzione è maggiore della seconda poi facendo il lim n$->oo$ di ...
3
5 lug 2012, 18:40

Ecce
Mi potete dare una mano? Ho provato sia per sostituzione che via teorema di D.H. ma non mi viene proprio lim x->0 x^2ln(1+x^2)/(e^2x-1)^4 grazie mille
2
29 giu 2012, 16:08

Musicam
Salve, allora devo determinare: -H=Sol($\Sigma$), -la dimensione di H; -scrivere una base, -se K è un sottospazio supplementare di H, K che dimensione può avere? $\Sigma$: $\{(x1+x3-x4=0),(3x1-x2+3x3-4x4=0),(-2x2-2x4=0):}$ Allora per la dimensione devo applicare la formula "dim=n-rango(H)" con n=numero incognite? Per la base devo risolvere il sistema trovando le soluzioni? gli altri punti non so..mi aiutate?
2
6 lug 2012, 00:37

Brancaleone1
Ciao a tutti Ho la funzione \(\displaystyle f(x,y)=\begin{cases} \frac{(x^2-y^2)\arctan(|xy|^\alpha)}{x^2+y^2} & (x,y) \ne (0,0) \\ 0 & (x,y) = (0,0) \end{cases} \) Devo controllare: a) per quali $\alpha > 0$ la funzione è continua in tutto il suo dominio; b) per quali $\alpha > 0$ la funzione è differenziabile in (0,0). Per il punto a) ho concluso che la funzione è continua in tutto il suo dominio perché combinazione di funzioni continue e perché il limite ...

Damuman
Ciao ragazzi, non ho passato l'esame di geometria B e quindi sono di nuovo qui a cercare di saltarci fuori e di capire. Ho difficoltà nel seguente problema: Sia V uno spazio vettoriale di dimensione n, U e W due suoi sottospazi non banali, tali che V è somma diretta di U e W. Sia g:V--->V così definita: se v=u+w, allora g(v)=u-w. a) Dimostrare che g è un applicazione lineare. b) g è un isomorfismo? Giustificare la risposta c) se V= R^3, U=L((2,0,1)) e W={(x,y,z)/x+y-z=0}, calcolare g(4,0,2) ...
5
3 lug 2012, 16:26

20021991
Salve, ho un problema con questo esercizio. Premetto che ho la risoluzione ma non non capisco alcuni passaggi: Per la risoluzione con il metodo della separazione delle variabili cerco soluzioni del tipo u=X(x)Y(y) per cui il problema si scinde in due equazioni ordinarie. Ma perché la risoluzione parte con la risoluzione di $ Y''- lambda Y = 0 $ e non con l'altra, $X'' + lambda X =0 $ ? C'è un motivo? Dipende dalle condizioni?
5
5 lug 2012, 20:23

Lory_91
Salve a tutti!Provavo a svolgere questo semplice esercizio ma noto una certa difficoltà: Rappresentare graficamente la retta $s: ((x_1),(x_2),(x_3))= ((1),(2),(3))+ ((1),(2),(3))t$; $L in s$?(con $L$ origine del sistema di riferimento). Il mio problema è rappresentare graficamente la retta. Ho provato a trasformare l'equazione parametrica in cartesiana: $\{(t=x_1-1),(t=(x_2-2)/2), (x_3= 3+3t):}$ Ho eguagliato le prime due equazioni e le ho sommate alla terza. Il punto è che non so quale dei due valori di $t$ devo ...
3
5 lug 2012, 15:22

maurigualtieri
ciao a tutti vi scrivo per chiedervi come risolvereste questo esercizio in modo da confrontare i vostri risultati con i miei Esercizio 2. Al variare del parametro $k in RR$, si considerino la retta $s {(x_1 + x_2 − x_3 = k),(x_1 + 2x_2 + x_3 = 2):}$ e il piano $pi : kx_1 + x_2 − x_3 = k.$ 1. Studiare la mutua posizione di $s$ e $pi$ al variare di $k$. 2. Posto $k = −1$, trovare un’equazione parametrica della retta $r$ ortogonale a $s$, parallela a ...

ansawo
non so se è la sezione giusta, ma credo di si...al massimo verrà spostato ho due dubbi sul funzionamento della caffettiera il primo è proprio come funziona nel senso, io me lo sono immaginato in questo modo. Quando viene messa la caffettiera sul fuoco, parte dell'acqua diventa vapore, creando così una maggiore pressione interna. questa spinge diciamo l'acqua rimanente su, così da passare attraverso il caffè e prendere gli aromi. il secondo riguarda un fenomeno che accade. cioè che se il ...