Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
robb12
Buonasera! Ho delle difficoltà su questo problema riportato su questo sito( http://corsiadistanza.polito.it/corsi/p ... opompe.pdf ); è in fondo il numero 5, riporto comunque il testo: Una pompa centrifuga trasferisce acqua tra due serbatoi con dislivello geometrico di 100 metri, collegati con un circuito le cui perdite sono proporzionali a $Q^2$ .A 1500 rpm manda 100 l/s con $H$=125m e $eta_p$=0.8 (si ammetta $eta_m$ e $eta_v$ pari a 1). Nota la caratteristica manometrica ...
2
5 lug 2012, 15:45

nuwanda1
Ho trovato questa formulazione della retta passante per i vettori $x$ e $y in R^n$: $x(alpha)=alphax + (1-alpha)y$ per $alpha in R^n$ Come del resto, se $alpha$ sta tra 0 e 1, è il segmento che unisce i punti x e y. A senso mi torna (per $alpha=0$ ottengo y, per $alpha=1$ ottengo x. Ma perchè è proprio una retta?? Che equazione è??
3
19 lug 2012, 17:16

stelladinatale1
Perchè un gruppo che non ha sottogruppi propri deve avere per forza ordine primo?

ee4
Buon pomeriggio forum Ho qualche dubbio su questo esercizio d'esame: devo calcolare l'insieme di definizione: $\omega = y log (1+xy) dx - x log (1+xy)$ $1+xy > 1$ $xy >0$ cioè $x>0, y>0$ e $x<0, y<0$ dire se è esatta. se fosse esatta, implicherebbe che sia chiusa. però ho notato che non è nemmeno chiusa.....poichè: $da/dx =((x y)/(1+x y)+log(1+x y))$ $db/dx =(-(x y)/(1+x y)-log(1+x y))$ quindi l'esercizio successivo che mi chiede: calcolare facendo uso delle formule di gauss green l'integrale curvilineo di ...
4
ee4
18 lug 2012, 15:46

relish
Ciao a tutti, nell'esame di Algoritmi e strutture dati mi viene chiesto di calcolare il numero di iterazioni e la complessità della singola iterazione di ogni comando ripetitivo all'interno di un algoritmo ricorsivo. Per spiegarmi meglio vi scrivo degli esempi di esercizio e la soluzione data. PRIMO: int f(int x) { if (x <= 0) return 1; int b = 3 + 2*f(x/2); cout << b + f(x/2); return b + b; } Con soluzione in relazione di ricorrenza: Rf(0)= d Rf(n)= c+ ...
10
17 lug 2012, 16:35

shazor
Una mole di un gas perfetto monoatomico esegue una trasformazione a seguito della quale la sua pressione varia dal valore iniziale $p_A=1.5*10^5 Pa$ al valore finale $p_B=2.5*105 Pa$. Il calore totale scambiato dal gas durante la trasformazione è $Q=2500 cal$. Sapendo che nello stato iniziale e in quello finale della trasformazione il volume del gas è uguale ($V=3 dm^3$), determinare: a) la variazione di energia interna subita dal gas; b) il lavoro fatto dal gas; a) ...

shazor
Ciao a tutti avrei bisogno di un aiuto sullo svolgimento di questo esercizio Calcolare i coefficienti della serie di Fourier del prolungamento periodico dispari della funzione: $f(x)= 2x^2 , x in[0,pi]$ Ringrazio anticipatamente
10
17 lug 2012, 02:05

stelladinatale1
Salve a tutti! Ho due domande da fare: 1) Sto studiando il seguente teorema: Se $G$ è un gruppo tale che $|G|=p^n$ (dove $p$ è un numero primo) allora $G$ è un gruppo nilpotente di classe al più $n-1$ Nella dimostrazione di questo teorema ho costruito la serie centrale ascendente di $G$ $1<Z(G)\leq Z_2\leq\ldots\leqZ_c=G$ Sono arrivata a dimostrare che $\frac{Z_{n-1}}{Z_{n-2}}=\frac{G}{Z_{n-2}}$, ma non capisco l'ultimo passaggio del teorema cioè il perchè ...

Brancaleone1
Ciao a tutti Devo calcolare $\root{5}{e}$ con 2 cifre decimali esatte, ma non so se sto facendo giusto. Prendo $g(x)=e^x$. In questo modo $\root{5}{e}=g(\frac{1}{5})$ con $x_0=0$. Considerando il resto di Lagrange $R_n(x)=\frac{g^{n+1}(\xi)}{(n+1)!}x^{n+1}$ ho che $|g(\frac{1}{5})-P_n(\frac{1}{5})| = |\frac{e^x}{(n+1)!} \cdot \frac{1}{5^{n+1}}|$ Allora $|g(\frac{1}{5})-P_n(\frac{1}{5})| \le \frac{e^{\frac{1}{5}}}{(n+1)!} \cdot \frac{1}{5^{n+1}} < \frac{3}{(n+1)! \cdot 5^{n+1}}<10^{-3}$, che è vero se $n \ge 3$ In questo modo $P_n(\frac{1}{5})=P_3(\frac{1}{5})=\sum_{k=0}^3 \frac{g^k(0)}{k!}(\frac{1}{5})^k=\sum_{k=0}^3\frac{1}{k!}\frac{1}{5^k}= 1+\frac{1}{5}+\frac{1}{2 \cdot 5^2}+\frac{1}{6 \cdot 5^3} \approx 1,221$ con $n=3$ cifre decimali esatte. Perciò $P_3(\frac{1}{5}) - 10^{-3}<\root{5}{e}<P_3(\frac{1}{5})+10^{-3}$ $\Rightarrow 1,220<\root{5}{e}<1,223$ $\Rightarrow \root{5}{e} \approx 1,22$ con due cifre ...

MarkNin
devo trovare una primitiva di $x^2 f(x)$. la funzione è la seguente: $ sum_(n = 1)^(+oo) n^3[(1+1/n)-1] (x^3-1)^n $ per calcolarmi la primitiva dovrei calcolarmi l'integrale giusto?? quindi scrivo: $int x^2 sum_(n = 1)^(+oo) n^3[(1+1/n)-1] (x^3-1)^n dx $ poichè $ sum_(n = 1)^(+oo) n^3[(1+1/n)-1] $ non dipende da x lo posso anteporre all'integrale e quindi calcolare: $int x^2 (x^3-1)^n dx $ e adesso??? scusate se vi do fretta ma domani dovrei affrontare un orale ed ho ancora dei dubbi ringrazio anticipatamente quanti interverranno!
22
19 lug 2012, 13:23

johnc1
FIssato un riferimento ortonormale $ cc(R) = (O,B) $ nello spazio $ S3 $, si considerino le rette r ed s di equazioni $ r:{ ( x-3z=0 ),( y+2z=1 ):} $ $ s:{ ( x=3t+2 ),( y=-2t-2 ),(z=t):} $ Si determini la distanza fra la retta r e la retta s per prima cosa sono andato alla ricerca dei vettori di $ r $ imponendo $ z=t $ $ r:{ ( x=3t ),( y=-2t+1 ),(z=t):} $ quindi ho evidenziato il punto appartente a $ s $ , $ Ps(2, -2, 0) $ e ricavato il piano contenente $ r $, cioè ...
11
17 lug 2012, 11:34

starbike
Salve a tutti non riesco a capire proprio come svolgere questo esercizio: Determinare se è prolungabile con continuità $f(x,y) = (e^(x-y)-1)/(2x-2y)$
8
18 lug 2012, 18:15

marixg
sia $R2,2$ lo sapzio delle matrici reali di ordine 2 si dica se l'applicazione $f$ tale che $f(A)=PAP^(-1)$ per ogni $A$ in $R2,2$ dove $P=((0,1),(-1,0))$ a)è lineare. b) la matrice associata ad $f$ rispetto la base canonica c)una base del nucleo, dell'immagine e si dica se f è iniettiva o suriettiva. d)trovare $f^(-1)((0,1),(-1,0))$ e) studiare la diagonalizzabilità di $f$. f)verificare che la restrizione ...
4
19 lug 2012, 00:51

starbike
Salve a tutti, sto cercando di determinare il gradiente della $f(x,y) = cos2xseny$ nel punto $(pi/4 , pi/4)$ Se faccio il limite del rapporto incrementale mi esce la derivata rispetto x e rispetto y entrambe 0 se invece faccio subito la derivata rispetto a x esce -$sqrt(2)$...dove sbaglio???
10
18 lug 2012, 18:13

Paolo902
Esercizio. Dire se le seguenti successioni ammettono limite per $n \to +\infty$ e, in caso affermativo, calcolare il valore di tali limiti: (a) [tex]a_n:= \frac{\log{n!}}{n \log{n}}[/tex]; (b) [tex]b_n:= \frac{\sqrt[n]{(2n)!!}}{n}[/tex]; (c) [tex]c_n:= \frac{\sqrt[n]{(2n+1)!!}}{n}[/tex]; (d) [tex]d_n:= \frac{\sqrt[n]{n!!}}{n}[/tex]. In spoiler ricordo alcune definizioni utili per svolgere l'esercizio. Addenda. Ricordo che il semifattoriale di un numero è la funzione ...
4
18 lug 2012, 12:28

giuscri
E' da ieri che ogni volta che sfoglio questo passaggio sul mio libro di Analisi ho il vuoto -non riesco ad immaginarmi nulla. Sia $f: X -> Y$, siano $X_1$ , $X_2 $ e $A$ sottoinsiemi di $X$ e $Y_1$ , $Y_2$ e $B$ sottoinsiemi di $Y$. Valgono le seguenti cose: 1. $f^(-1) (Y_1 nn Y_2) = f^(-1) (Y_1) nn f^(-1) (Y_2)$[/list:u:2kynygwi] 2. $f(X_1 nn X_2) sube f(X_1) nn f(X_2)$[/list:u:2kynygwi] Qualche dritta per ...
3
19 lug 2012, 02:50

MattRCS86
Ciao a tutti,vorrei chiedere un chiarmento circa la scomposizione della tensione nei classici esercizi in cui si hanno corpi legati con una fune passante su carrucola e in cui può essere richiesto il calcolo delle tensioni,dell'accelerazione,ecc.. Io di solito considero la tensione su ognuno dei due corpi come due forze ben distinte e con valori diversi,ossia: -legge di newton su corpo 1,da cui ricato la T1; -legge di newton su corpo 2,da cui ricavo la T2. A questo punto,se mi viene chiesto il ...

Brancaleone1
Ciao a tutti Ho la funzione \[ f(x)= \int_x^{+\infty} g(t) dt= \int_x^{+\infty} \frac{\arctan{\frac{1}{t}}}{t^3-t} dt \] Dopo averne determinato il dominio, devo calcolare il valore di $f(10)$ a meno di $10^{-3}$. Per il dominio non credo di avere problemi: mi trovo il dominio di $g(t)$, calcolo i limiti per gli estremi e controllo la convergenza. Mi viene: $\text{dom} g(t)=(-\infty, -1) \cup (-1, 0) \cup (0,1) \cup (1, + \infty)$ $\lim_{t \to 1^+} \frac{\arctan \frac{1}{t}}{t(t^2-1)}= \infty$ di ordine 2 $\to$ diverge $\Rightarrow \text{dom} f(x)=(1, + \infty)$ Ho però ...

nicman1
$\sum_{k=0}^(+infty) (-1)^(n)*(n!)/(2^n+3^n)(x+2)^n$ Bisogna determinare i valori di $x∈R$ per i quali la serie risulta convergente, motivando la risposta. Il ragionamento che ho fatto io è il seguente: -Ponendo $y=x+2$ ottengo una serie di potenze. -Studio $(-1)^(n)*(n!)/(2^n+3^n) = a_n$ Applico il criterio del rapporto e facendo il valore assoluto il termine $(-1)^(n) =1$ e quindi ottengo che: $lim_(n->+infty)(n+1!)/(2^(n+1)+3^(n+1))*(2^n+3^n)/(n!)$ $lim_(n->+infty)((n+1)(2^n+3^n))/(2*2^n+3*3^n)$ E ora facendo il limite mi viene $+infty$ e sicuramente c'è un ...
6
18 lug 2012, 00:02

x4ntu5
Salve a tutti, avrei un quesito da porre: Sia $A=((2,-2,4),(1,-1,2),(1,-1,2))$, scrivere una matrice $B$ tale che $Ker(B)=Im(A)$ e $Im(B)=Ker(A)$. Si calcola che $Im(A)=span{((2),(1),(1))}=Ker(B)$ e $Ker(A)=span{((1),(1),(0)),((-2),(0),(1))}=Im(B)$, ed in teoria si potrebbero già scrivere le prime due colonne di $B$ coincidenti con i vettori di $Im(B)$, ma manca la terza colonna. Correggetemi se sbaglio. Qual è il risultato? Grazie mille in anticipo!
3
19 lug 2012, 01:49