Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Buonasera!
Ho delle difficoltà su questo problema riportato su questo sito( http://corsiadistanza.polito.it/corsi/p ... opompe.pdf ); è in fondo il numero 5, riporto comunque il testo:
Una pompa centrifuga trasferisce acqua tra due serbatoi con dislivello geometrico di 100 metri, collegati con un circuito le cui perdite sono proporzionali a $Q^2$ .A 1500 rpm manda 100 l/s con $H$=125m e $eta_p$=0.8 (si ammetta $eta_m$ e $eta_v$ pari a 1). Nota la caratteristica manometrica ...
Ho trovato questa formulazione della retta passante per i vettori $x$ e $y in R^n$:
$x(alpha)=alphax + (1-alpha)y$ per $alpha in R^n$
Come del resto, se $alpha$ sta tra 0 e 1, è il segmento che unisce i punti x e y.
A senso mi torna (per $alpha=0$ ottengo y, per $alpha=1$ ottengo x. Ma perchè è proprio una retta?? Che equazione è??
Perchè un gruppo che non ha sottogruppi propri deve avere per forza ordine primo?
Buon pomeriggio forum
Ho qualche dubbio su questo esercizio d'esame:
devo calcolare l'insieme di definizione:
$\omega = y log (1+xy) dx - x log (1+xy)$
$1+xy > 1$
$xy >0$ cioè $x>0, y>0$ e $x<0, y<0$
dire se è esatta.
se fosse esatta, implicherebbe che sia chiusa.
però ho notato che non è nemmeno chiusa.....poichè:
$da/dx =((x y)/(1+x y)+log(1+x y))$
$db/dx =(-(x y)/(1+x y)-log(1+x y))$
quindi l'esercizio successivo che mi chiede:
calcolare facendo uso delle formule di gauss green l'integrale curvilineo di ...
Ciao a tutti, nell'esame di Algoritmi e strutture dati mi viene chiesto di calcolare il numero di iterazioni e la complessità della singola iterazione di ogni comando ripetitivo all'interno di un algoritmo ricorsivo.
Per spiegarmi meglio vi scrivo degli esempi di esercizio e la soluzione data.
PRIMO:
int f(int x) {
if (x <= 0) return 1;
int b = 3 + 2*f(x/2);
cout << b + f(x/2);
return b + b; }
Con soluzione in relazione di ricorrenza:
Rf(0)= d
Rf(n)= c+ ...
Una mole di un gas perfetto monoatomico esegue una trasformazione a seguito della quale la sua pressione varia dal valore iniziale $p_A=1.5*10^5 Pa$ al valore finale $p_B=2.5*105 Pa$. Il calore totale scambiato dal gas durante la trasformazione è $Q=2500 cal$. Sapendo che nello stato iniziale e in quello finale della trasformazione il volume del gas è uguale ($V=3 dm^3$), determinare: a) la variazione di energia interna subita dal gas; b) il lavoro fatto dal gas;
a) ...
Ciao a tutti avrei bisogno di un aiuto sullo svolgimento di questo esercizio Calcolare i coefficienti della serie di Fourier del prolungamento periodico dispari della
funzione:
$f(x)= 2x^2 , x in[0,pi]$
Ringrazio anticipatamente
Salve a tutti!
Ho due domande da fare:
1) Sto studiando il seguente teorema:
Se $G$ è un gruppo tale che $|G|=p^n$ (dove $p$ è un numero primo) allora $G$ è un gruppo nilpotente di classe al più $n-1$
Nella dimostrazione di questo teorema ho costruito la serie centrale ascendente di $G$
$1<Z(G)\leq Z_2\leq\ldots\leqZ_c=G$
Sono arrivata a dimostrare che $\frac{Z_{n-1}}{Z_{n-2}}=\frac{G}{Z_{n-2}}$, ma non capisco l'ultimo passaggio del teorema cioè il perchè ...
Ciao a tutti
Devo calcolare $\root{5}{e}$ con 2 cifre decimali esatte, ma non so se sto facendo giusto.
Prendo $g(x)=e^x$. In questo modo $\root{5}{e}=g(\frac{1}{5})$ con $x_0=0$.
Considerando il resto di Lagrange $R_n(x)=\frac{g^{n+1}(\xi)}{(n+1)!}x^{n+1}$ ho che
$|g(\frac{1}{5})-P_n(\frac{1}{5})| = |\frac{e^x}{(n+1)!} \cdot \frac{1}{5^{n+1}}|$
Allora
$|g(\frac{1}{5})-P_n(\frac{1}{5})| \le \frac{e^{\frac{1}{5}}}{(n+1)!} \cdot \frac{1}{5^{n+1}} < \frac{3}{(n+1)! \cdot 5^{n+1}}<10^{-3}$, che è vero se $n \ge 3$
In questo modo
$P_n(\frac{1}{5})=P_3(\frac{1}{5})=\sum_{k=0}^3 \frac{g^k(0)}{k!}(\frac{1}{5})^k=\sum_{k=0}^3\frac{1}{k!}\frac{1}{5^k}= 1+\frac{1}{5}+\frac{1}{2 \cdot 5^2}+\frac{1}{6 \cdot 5^3} \approx 1,221$ con $n=3$ cifre decimali esatte.
Perciò
$P_3(\frac{1}{5}) - 10^{-3}<\root{5}{e}<P_3(\frac{1}{5})+10^{-3}$
$\Rightarrow 1,220<\root{5}{e}<1,223$
$\Rightarrow \root{5}{e} \approx 1,22$ con due cifre ...
devo trovare una primitiva di $x^2 f(x)$.
la funzione è la seguente:
$ sum_(n = 1)^(+oo) n^3[(1+1/n)-1] (x^3-1)^n $
per calcolarmi la primitiva dovrei calcolarmi l'integrale giusto??
quindi scrivo:
$int x^2 sum_(n = 1)^(+oo) n^3[(1+1/n)-1] (x^3-1)^n dx $
poichè $ sum_(n = 1)^(+oo) n^3[(1+1/n)-1] $ non dipende da x lo posso anteporre all'integrale e quindi calcolare:
$int x^2 (x^3-1)^n dx $
e adesso???
scusate se vi do fretta ma domani dovrei affrontare un orale ed ho ancora dei dubbi
ringrazio anticipatamente quanti interverranno!
FIssato un riferimento ortonormale $ cc(R) = (O,B) $ nello spazio $ S3 $, si considerino le rette r ed s di equazioni
$ r:{ ( x-3z=0 ),( y+2z=1 ):} $
$ s:{ ( x=3t+2 ),( y=-2t-2 ),(z=t):} $
Si determini la distanza fra la retta r e la retta s
per prima cosa sono andato alla ricerca dei vettori di $ r $ imponendo $ z=t $
$ r:{ ( x=3t ),( y=-2t+1 ),(z=t):} $
quindi ho evidenziato il punto appartente a $ s $ , $ Ps(2, -2, 0) $ e ricavato il piano contenente $ r $, cioè ...
Salve a tutti non riesco a capire proprio come svolgere questo esercizio:
Determinare se è prolungabile con continuità
$f(x,y) = (e^(x-y)-1)/(2x-2y)$
sia $R2,2$ lo sapzio delle matrici reali di ordine 2 si dica se l'applicazione
$f$ tale che $f(A)=PAP^(-1)$ per ogni $A$ in $R2,2$ dove $P=((0,1),(-1,0))$
a)è lineare.
b) la matrice associata ad $f$ rispetto la base canonica
c)una base del nucleo, dell'immagine e si dica se f è iniettiva o suriettiva.
d)trovare $f^(-1)((0,1),(-1,0))$
e) studiare la diagonalizzabilità di $f$.
f)verificare che la restrizione ...
Salve a tutti,
sto cercando di determinare il gradiente della $f(x,y) = cos2xseny$ nel punto $(pi/4 , pi/4)$
Se faccio il limite del rapporto incrementale mi esce la derivata rispetto x e rispetto y entrambe 0 se invece faccio subito la derivata rispetto a x esce -$sqrt(2)$...dove sbaglio???
Esercizio. Dire se le seguenti successioni ammettono limite per $n \to +\infty$ e, in caso affermativo, calcolare il valore di tali limiti:
(a) [tex]a_n:= \frac{\log{n!}}{n \log{n}}[/tex];
(b) [tex]b_n:= \frac{\sqrt[n]{(2n)!!}}{n}[/tex];
(c) [tex]c_n:= \frac{\sqrt[n]{(2n+1)!!}}{n}[/tex];
(d) [tex]d_n:= \frac{\sqrt[n]{n!!}}{n}[/tex].
In spoiler ricordo alcune definizioni utili per svolgere l'esercizio.
Addenda. Ricordo che il semifattoriale di un numero è la funzione ...
E' da ieri che ogni volta che sfoglio questo passaggio sul mio libro di Analisi ho il vuoto -non riesco ad immaginarmi nulla.
Sia $f: X -> Y$, siano $X_1$ , $X_2 $ e $A$ sottoinsiemi di $X$ e $Y_1$ , $Y_2$ e $B$ sottoinsiemi di $Y$.
Valgono le seguenti cose:
1. $f^(-1) (Y_1 nn Y_2) = f^(-1) (Y_1) nn f^(-1) (Y_2)$[/list:u:2kynygwi]
2. $f(X_1 nn X_2) sube f(X_1) nn f(X_2)$[/list:u:2kynygwi]
Qualche dritta per ...
Ciao a tutti,vorrei chiedere un chiarmento circa la scomposizione della tensione nei classici esercizi in cui si hanno corpi legati con una fune passante su carrucola e in cui può essere richiesto il calcolo delle tensioni,dell'accelerazione,ecc..
Io di solito considero la tensione su ognuno dei due corpi come due forze ben distinte e con valori diversi,ossia:
-legge di newton su corpo 1,da cui ricato la T1;
-legge di newton su corpo 2,da cui ricavo la T2.
A questo punto,se mi viene chiesto il ...
Ciao a tutti
Ho la funzione
\[ f(x)= \int_x^{+\infty} g(t) dt= \int_x^{+\infty} \frac{\arctan{\frac{1}{t}}}{t^3-t} dt \]
Dopo averne determinato il dominio, devo calcolare il valore di $f(10)$ a meno di $10^{-3}$.
Per il dominio non credo di avere problemi: mi trovo il dominio di $g(t)$, calcolo i limiti per gli estremi e controllo la convergenza. Mi viene:
$\text{dom} g(t)=(-\infty, -1) \cup (-1, 0) \cup (0,1) \cup (1, + \infty)$
$\lim_{t \to 1^+} \frac{\arctan \frac{1}{t}}{t(t^2-1)}= \infty$ di ordine 2 $\to$ diverge
$\Rightarrow \text{dom} f(x)=(1, + \infty)$
Ho però ...
$\sum_{k=0}^(+infty) (-1)^(n)*(n!)/(2^n+3^n)(x+2)^n$
Bisogna determinare i valori di $x∈R$ per i quali la serie risulta convergente, motivando la risposta.
Il ragionamento che ho fatto io è il seguente:
-Ponendo $y=x+2$ ottengo una serie di potenze.
-Studio $(-1)^(n)*(n!)/(2^n+3^n) = a_n$
Applico il criterio del rapporto e facendo il valore assoluto il termine $(-1)^(n) =1$ e quindi ottengo che:
$lim_(n->+infty)(n+1!)/(2^(n+1)+3^(n+1))*(2^n+3^n)/(n!)$
$lim_(n->+infty)((n+1)(2^n+3^n))/(2*2^n+3*3^n)$
E ora facendo il limite mi viene $+infty$ e sicuramente c'è un ...
Salve a tutti, avrei un quesito da porre:
Sia $A=((2,-2,4),(1,-1,2),(1,-1,2))$, scrivere una matrice $B$ tale che $Ker(B)=Im(A)$ e $Im(B)=Ker(A)$.
Si calcola che $Im(A)=span{((2),(1),(1))}=Ker(B)$ e $Ker(A)=span{((1),(1),(0)),((-2),(0),(1))}=Im(B)$, ed in teoria si potrebbero già scrivere le prime due colonne di $B$ coincidenti con i vettori di $Im(B)$, ma manca la terza colonna. Correggetemi se sbaglio. Qual è il risultato? Grazie mille in anticipo!