Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Salve sono alle prese con un esercizio che non ho mai svolto (è il primo che faccio) mi chiede di calcolare lo sviluppo in serie di Fourie fino a $m=2$ della funzione $f(x)={( 0,-\pi<x<=0),(1,0<x<=\pi):}$
Non ho proprio idea di come si svolgono qualcuno mi aiuta????
Un mio primo tentativi è questo parto dallo scrivere le relazioni che mi servono
$f(x)=\sum_{k=1}^\infty a_0 + (a_kcoskx+b_ksenkx)$
i coefficienti si calcolano in questo modo $a_k=1/\pi\int_-\pi^\pi f(x)coskx dx$, $b_k=1/\pi\int_-\pi^\pi f(x)senkx dx$ ed
$a_0=1/\pi\int_-\pi^\pi f(x) dx$ ma adesso tutto questo come lo ...

potete dirmi qual è la formula per trovare l'elasticità media tra due punti di una funzione, plz?

Vorrei sapere se è corretto questo procedimento per trovare la matrice del cambio di coordinate di una forma canonica nel caso si tratti di una rotazione.
Avendo già la forma canonica per esempio di un ellisse ricavo gli autospazi relativi ai due autovalori, in seguito normalizzo i vettori dei due autospazi e li uso come colonne della matrice.
In caso i due autospazi fossero $(1,-1),(1,1)$ otterei la matrice avente per colonne $(1/sqrt(2),-1/sqrt(2)) e (1/sqrt(2),1/sqrt(2))$.
Un conoscente vi propone il seguente gioco. Voi gli versate una "scommessa" S e poi lanciate 10 volte una moneta equa. Se escono tutte croci, oppure un numero di teste inferiori al numero di croci, allora voi perdete. In caso contrario, il gioco si interrompe appena il numero delle teste supera quello delle croci e il vostro avversario vi paga una somma W.
Calcolare la distribuzione di probabilità della variabile aleatoria "vincita" e stabilire la relazione che deve intercorrere tra W e S ...

Salve a tutti,
mi ritrovo a studiare analisi matematica 2, ed il docente ha voluto rinfrescare un pò la memoria con alcuni pre-corsi reintroducendo il concetto di operazione binaria.... egli disse:
"un insieme $F$ è un' operazioni binaria in un insieme $A$, trattiamo solamente quelle interne, se $F:A xx A ->A$, ovvero una funzione, e quindi secondo la def. "una relazione binaria, in questo caso, di $A xx A$ in $A$ che soddisfa ...

Salve a tutti, mi sono trovato davanti un esercizio che chiedeva: Dati U=Span{(1, -1, 2, -2), (3, -2, -3, 2), (3, -1, -2, 0)} e W=Span{(2, -1, -1, 0), (0, 0, 0, 2), (4, -2, -2, 2)} trovare, se esiste, un vettore v appartenente allo spazio somma U+W ma non appartenente all'unione insiemistica U U W.
Io non so come procedere ho pensato dato che $v\inU+W$ è $v=u+w$ con $u\inU$ e $w\inW$ allora v può essere (1, -1, 2, -2)+(2, -1, -1, 0)=(3, -2, 1, -2)???

Ragazzi non riesco proprio a risolvere questo esercizio:
Nell'anello $ ZZ[x] $ si consideri l'ideale $ I=(x^5+x^4-x^3-1 , x^4+x^2+1 , 3) $ e stabilire se è primo o massimale in $ ZZ[x] $.
Non so proprio come procedere perchè non ho mai avuto a che fare con ideali generati da più di 2 elementi.

Si consideri il polinomio $ f(x)=x^6+3 $ in $ ZZ_7[x] $ . Calcolare il campo di spezzamento $ E $ di $ f $ su $ ZZ_7[x] $.
Allora $f$ non ha ridici in $ ZZ_7[x] $ e quindi io ho scritto $ f$ come $ x^6-4 $ da cui $ f=(x^3-2)(x^3+2) $. Ma a questo punto che faccio? Scompongo ancora i fattori?

Ciao
Sto trovando problemi nel calcolo di questo volume di solido:
$T={(x,y,z) R^3: x^2 + y^2 <= 4 , y -z +1 >=0 , z>= -4}$
sto guardando:
http://it.wikipedia.org/wiki/Teoremi_di_Pappo-Guldino
passo a coordinate cilindriche:
$x= \rho cos \theta$
$y = \rho sin \theta$
$z=z$
quindi quel T diviene:
$-2<= \rho <= 2$
$z>=-4$ con $\rho sin \theta -z +1 >=0$ e in $z$ posso mettere direttamente $4$?
Scusate, è il mio primo esercizio e vorrei farlo per passi!
Grazie forum!

Ciao, sono di nuovo io.
Altra domanda, un pò particolare stavolta: un esercizio sul seno integrale.
''determinare la primitiva nulla per $x=0$ della funzione:
$f(x) = (sin x)/x$
dato che la primitiva non è possibile scriverla in funzioni analitiche, uso la serie: $sin(x) = x - x^3/3!$
$\int (x - x^3/3!)/x dx = x - (x^3)/18 + c$
il fatto che dica che sia nulla per $x=0$ mi dice che posso usare quell'approssimazione di taylor? O mi da una condizione alla primitiva per trovare la costante ...

Salve a tutti, c'è un esercizio di algebra dove non riesco a trovare l'errore.
L'esercizio in questione dice: trovare un campo con 27 elementi. Ho provato con il seguente anello Z/3Z[cos(2/3pigreco)+isen(2/3 pigreco)] cioè il più piccolo anello contenente Z/3Z e la radice cubica dell'unità che chiamerò per comodità u. Studiando gli elementi di tale anello mi accorgo che elevando a potenza u dopo 3 step ritorno al numero di partenza; inoltre gli elementi di Z/3Z sono 3. Quindi un generico ...

Salve a tutti!
Affrontavo il seguente problema di algebra lineare con cui ho avuto qualche problema. La traccia è:
Sia $\psi : CC_2 [t] * CC_2 [t] -> CC$, definita da $\psi (f,g) = f(0) g(0) + f^{\prime} (0) g^{\prime}(0) + f^{\prime}'(0) g^{\prime}'(0)$;
i) si provi che $\Psi$ non è un prodotto scalare hermitiano in $CC_2 [t]$;
ii) si indichino $f,g in CC_2 [t]$ tali che $\psi (f,f) = -1, \psi (g,g) = 0 $, rispettivamente;
iii) si indichi$ {h in CC_2 [t] | \psi (h, 1 + it - it^2) = 0 }$.
Ho cercato di svolgere il primo punto dell'esercizio ma ho subito incontrato dei problemi a risolverlo. Per ...

Una portata massica di 1000 kg/h di azoto (massa molecolar e: MW = 28 kg/kmol, k = 1,4)
espande in una turbina dalle condizioni iniziali T= 1000 K e p1= 8 bar fino alla pressione p2= 1,5 bar secondo una trasformazione adiabatica reversibile. Valutare la temperatur a alla fine della espansione. Sapendo che la turbina è collegata ad un generatore elettrico con rendimento elettrico= 0,85, determinare la potenza elettrica che il generatore è in grado ...

Salve... sto studiando Analisi Matematica e nello studio di un esercizio mi sono venuti dei dubbi dato che non ho ancora ricevuto alcune proprietà..
L'argomento riguarda gli "o piccolo" e l'esercizio è il seguente:
o( (x-1)^3 )
io ho risolto cosi:
ho risolto il cubo ==> o(x^3 - 3x^2 + 3x - 1) da qui non ho avuto alcuna precisazione su come si risolva
da qui parte la domanda:
questo diventa : o(x^3) - o(3x^2) + o(3x) - o(1) ???? (1° domanda)
(2°domanda): se pur fosse cosi, o(1) non viene ...

Salve ragazzi,
ho un problema con la verifica di questo problema, in realtà è quasi una curiosità:
Dati P=(1,2,0) e Q=(3,1,1) determinare le equazioni parametriche/cartesiane di r per P e Q.
Dunque, trovato il vettore PQ impongo il passaggio della retta per P (e parallela a PQ):
mi trovo il seguente sistema (eq.parametriche):
x=1+2t
y=2-t
z=t
Ora, per determinare l'eq.cartesiana di r, mi occorrono una o due equazioni e, soprattutto, perché?
Io avevo trovato, semplicemente x+2y-5=0, ma ho il ...
Prima domanda per me! Mi preparo per l'orale di geometria di domani
Ho questo endomorfismo: {f(x,y,z,t) € R^4| x+y+2z=x+3t)
Devo calcolarne dimensione nucleo, immagine e una base!
Per tutti gli endomorfismi classici f(x,y,z,t)=(x+y,y+z,x+t,z+t) ad esempio non ho problemi...ma con quello sopra entro un po nel pallone!
Grazie a tutti anticipatamente

Ciao a tutti!
Ho incontrato qualche problema nello svolgimento di questo problema di geometria di cui non ho soluzione. La traccia del problema è la seguente:
Rispetto ad un sistema di riferimento ortonormale, si consideri il cono circolare retto $\Theta$ di asse
$a$ : $ { ( x_1 = 1 + 2t ),( x_2 = -1 - t ),( x_3 = 1 - 2t):} $ e vertice $V = ((1),(-1),(1))$ e semiapertura $\pi /6$;
si indichi $P !in a $ e $P$ interno a $\Theta$.
Ho svolto l'esercizio trovando il vettore ...

Salve a tutti!
Stavo provando a svolgere un esercizio di algebra lineare la cui traccia è la seguente:
Sia $K$ un campo di caratteristica 2; si provi che $((\alpha, \beta),(\beta, \alpha))$ in $K^(2x2)$ è diagonalizzabile in $K$ se e solo se $\beta = 0$
Per prima cosa ho calcolato il polinomio caratteristico:
$det (A - \lambda I) = det ((\alpha - \lambda, \beta), (\beta, \alpha - \lambda)) = (\alpha - \lambda)^2 - \beta^2 = 0 $
Da cui si ricavano i seguenti autovalori:
$\lambda_1 = \alpha - \beta$ e $\lambda_2 = \alpha + \beta$
Se $\beta != 0 $, si hanno due radici distinte per cui ...

Premetto che è il primo esercizio che faccio in tal proposito e uno dei primi in generale sulle funzioni di più variabili, quindi potrei dire delle enormi boiate!
Esercizio. Determinare i punti critici di \(f(x,y)=x \sqrt[3]{y}\) e determinarne la natura.
Io lo sto svolgendo così, dov'è che sbaglio?
Ho trovato
\[\frac{ \partial }{\partial x} f(x,y)=\sqrt[3]{y}\]
\[ \frac{ \partial }{\partial y} f(x,y)=\frac{x}{3 \sqrt[3]{y^2})}\] se \(y \ne 0\)
Pongo quindi le derivate parziali uguali a ...

$\intintint_{V} \ 1/(x^2 + y^2 + z^2) dx\dy\dz$ con $\V={ z^2<=x^2 + y^2 <= 4z^2 , 1<= z + sqrt(x^2 + y^2)<= 3} $
Ragionando sullo svolgimento di questo integrale ho pensato di farlo per strati. Dalla prima disequazione, posso intuire che $\z>=0$ , in quanto $\ z^2<=x^2 + y^2 <= 4z^2 => z<=sqrt(x^2 + y^2)<= 4z$ , poiché dovendo essere la radice un valore positivo, allora anche $\z$ deve essere positivo! Quindi ponendo $\ rho=(x^2 + y^2)$ per il cambio in coordinate polari, avrò
$\ rho in [z, 2z] $ e $\ vartheta in [0, 2pi] $ . Ora il problema è come determinare gli estremi di ...