Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve a tutti,
ho un problema con un esercizio, l'ho fatto ma i risultati che mi vengono sono sbagliati, e sono in disaccordo coi teoremi che ho studiato. Questo è il testo:
"Assegnato il campo vettoriale di tipo radiale $\vec E = \phi(r) {x, y, z}$, dove $r=sqrt(x^2+y^2+z^2)$ e $\phi(r) in C^1(R)$,
1)calcolare il flusso uscente dalla superficie sferica $\Sigma_R$ di centro l'origine e raggio R;
2)calcolare la divergenza $Div(E)$;
3)verificare, calcolando l'integrale triplo
$int int int_(B_R) Div(E)dxdydz$, ...
Siano $f,g:RR^n->RR^m$ funzioni differenziabili in $x_0\inRR^n$. Allora $f+g$ è differenziabile in $x_0$ e $d(f+g)(x_0)=df(x_0)+dg(x_0)$.
Per dimostrarlo procedo così.
Sia $T=df(x_0)+dg(x_0)$.
Allora $lim_(x->x_0)((f+g)(x)-(f+g)(x_0)-T(x-x_0))/|x-x_0|=$
$=lim_(x->x_0)((f+g)(x)-(f+g)(x_0)-(df(x_0)+dg(x_0))(x-x_0))/|x-x_0|=$
$=lim_(x->x_0)(f(x)+g(x)-f(x_0)-g(x_0)-df(x_0)(x-x_0)-dg(x_0)(x-x_0))/|x-x_0|=$
$=lim_(x->x_0)((f(x)-f(x_0)-df(x_0)(x-x_0))/|x-x_0|+(g(x)-g(x_0)-dg(x_0)(x-x_0))/|x-x_0|)=0$
in quanto $f$ è differenziabile in $x_0$ con differenziale $df(x_0)$ e $g$ è differenziabile in $x_0$ con differenziale ...
Integrale aiuto
Miglior risposta
(x^2+1)/(x^alfa(x^3+x+1))?
questo integrale indefinito da 0 a inf mi dite in base a alfa in quali valori converge e in quali non?
Buongiorno a tutti & buona Domenica
Per quanto riguarda le forme differenziali, vorrei consultarmi con voi per fare un punto della situazioni per quanto riguarda i casi che si possono avere nello studio di esse;
In generale:
FormaChiusa+DominioSemplicementeConnesso→FormaEsatta
FormaChiusa+DominioLocalmenteSemplicementeConnesso→FormaEsatta
Se invece, per verifica diretta, riscontro che la forma non è chiusa, risulta essere automaticamente anche non esatta, al di là se il dominio sia ...
Salve ragazzi,
ho la seguente funzione
$ (x^(2))/2 + ln|x-2| $
Ho fatto tutto. Decrescente per $x<2$ Crescente per $x>2$. Etc, etc. Ho un flesso nel punto $Y=0.69 X=0$ come posso fare adesso a determinare la funzione come "esplode", con quale inclinazione?
propongo due esercizi coni numeri complessi:
\(\displaystyle 1)\) Quale dei seguenti numeri complessi è soluzione dell'equazione \(\displaystyle \frac{1}{\overline{z}}=1+i \)?
\(\displaystyle 2+2i \);
\(\displaystyle 2-2i \);
\(\displaystyle \frac{1}{2}+\frac{1}{2}i \);
\(\displaystyle \frac{1}{2}-\frac{1}{2}i \)
Non capisco come va fatto...
\(\displaystyle 2) \) Quali sono le soluzioni di questa equazione?
\(\displaystyle z^2-(i+1)z + i=0 \)
posto \(\displaystyle z=a+ib \ \) ...
salve a tutti, vorrei chiedere aiuto per quanto riguarda lo sviluppo dell'esercizio che riporterò sotto.
In genere mi richiescono queste tipologie di esercizi, ma i dubbi rimangon sempre, e con questa materia, tolto uno ne arriva subito un altro. Mi servirebbe più che altro una conferma sul modo in cui l'ho provato a risolvere.
Specifico che lavoro con il metodo grafico per i centri d'istantanea rotazione e con il metodo delle forze per la risoluzione dei problemi iperstatici
...
Salve,
qualcuno sa coma mai l'insieme $|1+h*z|<1$ con zeta complesso e h reale, coincide con l'insieme $0<h<-2*(Re(z))/|z|^2 $ ? Non riesco proprio a spiegarmelo!
Grazie per l'aiuto!
$R=Af{(1,0,1,0,0), (1,0,1,1,0)}, Q= Af{(1,1,1,0,0), (0,0,1,0,0)}, F= Af{(1,2,2,0,0), (2,0,2,0,0)}$ sono le tre rette.
Dire se le seguenti rette R e Q sono incidenti, parallele o sghembe e dare la dimensione del sottospazio da loro generato.
Per ultima cosa dare le dimensioni di: $R nn Af(Q uu F) $
allora io sinceramente sono in crisi su tutto l'esercizio, ma ci ho provato (fino a un certo punto).
Innanzitutto ho riscritto $R=(1,0,1,0,0)+L((1,0,1,1,0)-(1,0,1,0,0))=(1,0,1,0,0)+L(0,0,0,1,0)$
e stessa cosa per $ Q=(1,1,1,0,0)+L((1,1,1,0,0)-(0,0,1,0,0))=(1,1,1,0,0)+L(1,1,0,0,0)$
ora controllo se sono parallele:
$rk((0,0,0,1,0),(1,1,0,0,0))=2$ quindi non lo sono... giusto? doveva essere 1 per ...
Salve a tutti, sapreste dirmi una definizione elegante e semplice allo stesso tempo di funzionale convesso. Grazie in anticipo.
Avrei bisogno di un aiuto per una funzione POSIX. Riguarda le risorse IPC, è la funzione ftok che serve per creare una chiave da assegnare alla risorsa. Vorrei sapere quando vado a scrivere il programma ho due argomenti quando richiamo la ftok, il primo è il perocrso della chiave ,il secondo argomento è un intero che identifica la chiave.
Il mio dubbio è:prima di chiamare tale funzione ,devo creare la chiave con ipcmk e eventuali parametri a seconda della risorsa(coda di messaggi,memoria ...
Esercizio: Sia $1 < p < \infty$ , $f , g \in L^p (X, \mathcal{A} , \mu )$ ed
\[ F(t) = \int_X | f + t g |^p d \mu \;\;\;\;\;,\;\;\;\;t \in \mathbb{R}\]
Provare che $F$ è derivabile e calcolare la derivata di $F$ in $t = 0$.
Svolg:
Pongo $\eta(x, t) = | f(x) + t g(x)|^p$.
$\eta(* , t)$ è misurabile $AA x \in X$ ed $\eta(x , *)$ è derivabile $\forall t \in \mathbb{R}$.
\[ \left |\frac{\partial \eta}{\partial t} \right |= p | f + t g |^{p-1} |g| \le p 2^{p-2} ( |g| | f |^{p-1} + |t|^{p-1} ...
Ciao a tutti, chiedo gentilmente IL vostro aiuto su questo problema di fisica riguardo il moto parabolico.
Un proiettile viene sparato da una pistola da una altezza di 500 metri, con velocità uguale a 300 metri al secondo, e con un angolo di tiro rispetto al piano orizzontale pari a 30°. Il problema mi chiede la gittata e la velocità di impatto con il suolo.
Inoltre volevo chiedervi cos'è la velocità d'impatto con il suolo e in cosa si differenzia con la velocità che mi da il problema?
GRAZIE ...
salve,
ho questo esercizio che non so come impostarlo,la premessa dice "trovare k in modo tale che in x=0 ci sia una discontinuità di prima specie con un salto pari a 1" quindi so che il limite da destra e da sinistra che convergono a un valore finito ma i due limiti sono diversi, ora qua il primo limite se non erro non viene infinito? aiutooo
$f(x)={(2^(1/x),if x<0),(text{((e^(3x))-1)/x},if x>0):}$
grazie
Ciao a tutti, ho problemi a svolgere questo limite
$ lim_{x \to 1}\frac{ln(x)}{x^2-1} $
non capisco come risolverlo, e non posso usaro il confronto fra infinitesimi dato che numeratore e denominatore non vanno ad infinito
[size=150]Calcolare l'area della regione del piano T compresa tra le funzioni f(x) = x(e^x) e l'asse x per x € [-1,1][/size]
la soluzione è 2/e
la funzione x(e^x) nell'intervallo [-1,1] è negativa tra [-1,0] e positiva tra [0,1] quindi dovrei dividere l'integrale in due ma con il segno - davanti a quello in cui la funzione è negativa nell'intervallo [-1,0]. Dove sbaglio?
$lim_(x->0) (ln(x senx + cos(2x)) + x^2) / x^3$
Dalla soluzione del testo d'esame:
Arrestando lo sviluppo di Taylor al terzo ordine, al numeratore, abbiamo che
$= ln (x(x+x^2 omega (x)) + 1 - 2x^2 + x^3 omega (x)) + x^2$
$= ln (1 - x^2 + x^3 omega (x)) + x^2$
$= x^3 omega (x) - x^2 + x^2$
$= x^3 omega (x)$
dove $omega$ rappresenta una generica funzione infinitesima nell'origne. Quindi:
$lim_(x->0) (ln(x senx + cos(2x)) + x^2) / x^3 = lim_(x->0) (x^3 omega (x)) / x^3 = 0$
Cosa è questa x^3 omega (x) ?
In effetti, sviluppando con taylor, sia che mi fermi al secondo ordine, sia arrestandomi al terzo ordine, ma normalmente, senza l'ulilizzo di ...
Sto avendo problemi con questo limite.
$ lim_(x -> 1^+) (lnlnx-(x^e+e(x-1))ln(x-1))/(x-1) $
Ho tentato in più modi a risolverlo ma, dato che sono lunghi preferirei nn riportarli. C'è qualche buonanima che vuole provare a farlo? Grazie anticipatamente
Ciao a tutti, rieccomi con uno dei miei dubbi cretini su meccanica razionale
Allora, a me hanno ripetuto per tutto il corso e anche in Fisica 1 che i fili inestendibili e di massa trascurabile sottoposti a forze, reagiscono con una tensione che ha lo STESSO modulo in tutti i punti del filo, e che le carrucole liscie hanno come unico effetto quello di cambiare la direzione della tensione.
Allora perché in questo esercizio (e anche in altri del mio eserciziario) la tensione dello stesso filo ...
ciao l'altro giorno, mentre riflettevo su come un successione di misure (diciamo che tra una e la successica intercorre un tempo \(\displaystyle \tau \) ) su una certa osservabile possa influenzare la dinamica un sistema (per esempio uno spin 1/2 in un campo magnetico costante e uniforme lungo z), mi sono posto la seguente domanda: se gli autostati dell'osservabile che vado a misurare, diciamo la componente x dello spin \(\displaystyle S_x \) sono \(\displaystyle |\uparrow \rangle , ...