Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Nick_931
Buonasera ragazzi =) avrei bisogno di un aiuto a capire se sbaglio e dove sbaglio nello svolgimento di questo esercizio Sia [tex]S={(x,y) \in \mathbb{R} : x^2+y^2 \ge 1}[/tex] si dica se esiste e d eventualmente si calcoli il seguente integrale improprio [tex]\iint_S \frac{\log(x^2+y^2)}{x^2+y^2}[/tex] Quando mi trovo di fronte un integrale improprio di due variabili e mi si chiede l'esistenza, devo prima verificare che è continua f(x,y), e poi maggiorarla con una funzione tale ...
7
14 gen 2013, 19:04

Black Symphony
Salve! Avendo un sistema di un sottospazio e la sua matrice associata...come si stabiliscono i parametri per ricavarne le equazioni parametriche? Sono in R4, con base canonica, il sistema è di 2 equazioni e 4 indeterminate, ha rango=2 quindi dipende da 2 parametri, devo risolvere il sistema ma i parametri a quali indeterminate corrispondono?!

kioccolatino90
ciao a tutti ho l'equazione $3y'+y=(1-2x)y^4$; per risolverla la riscrivo come: $3y'y^(-4)+y^(-3)=(1-2x)$ avendo diviso ambo i membri per $y^4$ ora pongo $y^(-3)=z$ e si ha che: $z'=-3y^(-4)y'$ e quindi andando a sostituire otteniamo: $z'=z+2x-1$ che è un equazione di primo grado, con $a(x)=1$ e $A(x)=x$ quindi la soluzione è data da: $z(x)= e^(-x)[int e^x(2x-1)dx+C]=$ $e^(-x)[int 2xe^xdx-inte^xdx+C]=$ $e^(-x)[2int xe^xdx-e^xdx+C]=$ $e^(-x)[2xe^x-2e^x -e^x+C]=$ $e^(-x)[2xe^x-3e^x+C]=$ ...

DR1
Per come è definito l'insieme $ QQ := { p / q : p , q in ZZ , q != 0 } $ ,esso ammette denominatori negativi; ma qual'è l'operazione logica di una scrittura di questo tipo $ 1 / -5 $ ? Non sarebbe più corretto definirlo cosi $ QQ := { p / q : p , q in ZZ , q > 0 } $ ? p.s. attendo risposte, rimproveri, chiarimenti, e altro...... Grazie in anticipo. Buon apprendimento a tutti.

blackxion
Salve a tutti, ho un problema che mi sta bloccando. Se io ho due rette parallele, e conosco l'equazione solo di una, che è $r: x+2y+3=0$ e conosco la distanza tra le due rette, che è $h$, come faccio a trovare l'equazione dell'altra retta? Grazie in anticipo.
3
15 gen 2013, 17:15

Sorriso91
Buongiorno! Sono alle prese con il seguente esercizio: Sia $(X_1,...,X_n)$ un campione casuale estratto da una popolazione la cui distribuzione dipende dal parametro $\theta$ legato al momento secondo dalla seguente relazione: $\mu_2=4+2\theta$ stimare $\theta$ con il metodo dei momenti Io praticamente arrivo a dire che $\hat \theta=2-1/2M_2$ e, sapendo che la varianza campionaria (non corretta) è data da: $\hat \sigma^2 = 1/n *\sum_{i=1}^N (x_i - \bar X_n)^2 =1/n * \sum_{i=1}^N (x_i)^2 - \bar X_n^2 = M_2 - M_1^2$ ho scritto lo stimatore come $\hat \theta=2-1/2(\hat \sigma^2+\bar X_n^2)$ ma ...
6
14 gen 2013, 10:59

Kashaman
Ammetto che è abbastanza semplice come funzione, tuttavia necessito dei pareri circa la risoluzione del quesito. Ho da studiare $f(x)=\sqrt(|x^2-10x|)$ Procedo al seguente modo. Notiamo innanzi tutto che $Domf = RR$ e che $f \in C(RR) nn C^(\infty)(RR\\{0,10})$. Si verifica banalmente che $lim_{x->+\infty}=lim_{x->-infty}f(x)=+\infty$. E che $f>=0 AA x \in RR$ e si ha che $f(X)=0 <=> x_1=0 , x_2=10$. Determino $f'(x)$ al fine di determinare la monotonia di $f$. Si ha che $f'(x)= D(|x^2-10x|)*(1/(2f(x)))=..=(x(x-10)(x-5))/f(x)^3$ Dunque risolvendo ...
2
15 gen 2013, 19:55

ben86
Buongiorno a tutti, sono un nuovo utente in cerca di certezze nella vita La mia prof.ssa di Analisi Matematica 2 ci ha dato una serie di esercizi sulla probabilità, davvero molto carini. Dopo averli risolti ne è uscito un altro che proprio non riesco a capire come risolverlo. Il mio problema è più sull'approccio al problema stesso, per questo non ho postato di seguito eventuali soluzioni. Vorrei capire come sviluppare questo esercizio per arrivare a determinare la funzione di probabilità, la ...
4
15 gen 2013, 11:38

pica93
vi chiedo aiuto su questo esercizio Un manubrio è costituito da due masse uguali collegate da una sbarretta di massa trascurabile e di lunghezza 2d: supponiamo che inizialmente esso ruoti liberamente intorno ad un asse ortogonale al centro della sbarretta con velocità angolare wi. Se in virtù di forze interne le due masse vengono avvicinate in maniera da distare alla fine solo d l’una dall’altra, determinare la velocità angolare finale wf del sistema: A) wf = 2wi B) wf = wi C) non si può ...

GreenLink
Ciao, devo determinare il comportamento delle serie seguenti: $$\sum_{n=1}^{\infty} n^2 \arcsin (\frac{n+1}{n!}) $$ $$\sum_{n=1}^{\infty} \sqrt(n) \log (\frac{n^2+1}{n^2+3}) $$ ma non so bene come muovermi visto che non hanno segno costante. Qualche idea? Grazie.
11
15 gen 2013, 18:21

Lory314
Ciao a tutti!!!! Avrei bisogno un aiuto. Vorrei disegnare una funzione a bolla definita su un triangolo. In particolare è un polinomio di terzo grado che sia annulla sui lati del triangolo avente vertici (0,0,0), (0,1,0) e (1,0,0). Il disegno l'ho ottenuto con il seguente codice x = linspace(0,1,1000); y = linspace(0,1,1000); [X,Y] = meshgrid(x,y); Z = 27.*X.*Y.*(1-X-Y).*(Y <= 1-X); surf(X,Y,Z); hold on plot3([1 0],[0 1],[0 ...
1
12 gen 2013, 18:16

thedarkhero
Sia $f:RR^2->RR$ definita da $f(x,y)={(x^2y^2sin(1/(xy)),if xy!=0),(0,if xy=0):}$. Devo mostrare che è differenziabile su $RR^2$. Innanzitutto definisco la funzione $phi:RR->RR$, $phi(t)={(t^2sin(1/t),if t!=0),(0,if t=0):}$ e noto che $f(x,y)=phi(xy)$. $phi$ è continua e derivabile su $RR$, quindi anche differenziabile, visto che in dimensione 1 derivabilità e differenziabilità coincidono. Ora potrei affermare che $f$ è differenziabile su $RR^2$ perchè composizione di funzioni ...

mary8881
Ciao a tutti,sono nuova e scrivo perche' ho assoluto bisogno di imparare in piu' breve tempo possibile,come si risolvono questi esercizi visto che avro' presto un esame e non posso permettermi di farlo andare male...sarebbe una tragedia!Questo penso sia un esercizio simile a quelli che mi potranno capitare e vorrei avere una soluzione a cui far riferimento visto che attualemnte non ce l'ho e non so se quel che faccio e' giusto o totalmente sbagliato!:( Tradurre in un linguaggio ad alto livello ...
3
14 gen 2013, 23:49

smaug1
Per opporsi alle azioni orizzontali si fa uso dei nuclei irrigidenti, cioè di mensole scatolari (centrati rispetto allo scheletro), che hanno il compito di assorbire energia elastica a favore dei pilastri e delle travi. Però non mi è chiaro cosa siano e come vengano messe. Mentre nel caso delle fondazioni, che differenza c'è tra un cordolo e T rovesciata e un plinto? Il primo viene usato per sostenere muri portanti in muratura mentre gli altri nel caso di strutture a scheletro? Grazie mille
14
7 dic 2012, 01:43

jejel1
$ f(x)= (4-k)*x+(1-2k)*lnx $ non so proprio come iniziare a parte che il dominio è per ogni x maggiore di 0 qualcuno che mi aiuta???
7
14 gen 2013, 16:50

ValeValeVale92
Sia f : R3 → R3 l’applicazione lineare definita da: f ((x, y, z)) = (x + z, x + 2y + z, x + y + z). Ciaoo mi aiutate a svolgere questo esercizio??? Grazie Sia E la base canonica di R3 e sia inoltre B = (v1,v2,v3), dove v1 = (1,1,0), v2 = (1,0,1), v3 = (0,1,1), un’altra base di R3.Determinare: 1) la matrice ME,E;f 2) l’intersezione ker(f ) ∩ Im(f ) e dire se ker(f ) + Im(f ) `e somma diretta di sottospazi (motivare all’interno); 3) la matrice MB,E; f 4) f(v1 + v2 + v3).

Giacomo9o1
Ciao a tutti!! Nn riesco a risolvere questo esercizio.. Calcolare l'integrale curvilineo della forma differenziale ydz + zdx lungo il bordo della superficie x= -y^2 - z^2 + 2, x>o e verificare il risultato con la formula di stokes. Allora il risultato è 2pi greco e nn ho problemi a calcolare la circuitazione, il problema è con il rotore. Nn riesco assolutamente a risolverelo, mi impicciò con le coordinate. Vorrei cambiare x con z in modo da avere un dominio di base circolare, risolvibile in un ...
4
15 gen 2013, 11:49

Caenorhabditis
Data una funzione $f(x)$, esiste un algoritmo per trovare le funzioni che, applicate $ n $ volte ad $ x $, equivalga ad $ f $? Non so se abbia una notazione ufficiale; qui la chiamerò $ f^{1/n}(x) $. Ad esempio, per $ f^{1/2}(x) $: $ f(x)=k → f^{1/2}(x)=k $ $ f(x)=x → f^{1/2}(x)=x $ $ f(x)=cx → f^{1/2}(x)=\sqrt{c}x $ $ f(x)=ax+b → f^{1/2}(x)=\sqrt{a}x + \frac{b}{\sqrt{a}+1} $ $ f(x)=ax^n → f^{1/2}(x)=\^{\sqrt{n}+1}\sqrt{a}x^{\sqrt{n}} $ $ f(x)=1-x → (x-1/2)i+1/2 $

18Gigia18
Sto studiando la costruzione della misura di Lebesgue in $ RR ^ n $ e devo provare che ogni aperto $ A $ di $ RR ^ n $ è unione numerabile disgiunta di intervalli. Nella dimostrazione dice di pavimentare $ RR ^ n $, scrivendolo come unione disgiunta di intervalli tutti uguali tra loro, nella seguente maniera: si considera l'ipercubo unitario con un vertice in 0: $ Q_0= ([0,1[ )^ n $ e si trasla mediante vettori di traslazione di coordinate intere ...
2
15 gen 2013, 18:09

Linux1987
Perchè nell'ambito dei numeri reali i logaritmi con base negativa non sono trattati??
22
30 ago 2012, 10:56