Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve vorrei capire se ho svolto in modo corretto l'esercizio ( problema di Cauchy):
Il testo è:
[tex]y' = \frac{-3x}{8y}[/tex]
[tex]y(1) = -1[/tex]
Trovo:
[tex]\frac{dy}{dx} = \frac{-3x}{8y}[/tex]
cioè [tex]dy8y = -3xdx[/tex]
Svolgo gli integrali:
[tex]\int{8y} = \int{-3x} \longrightarrow 4y^{2} = \frac{-3x^{2}}{2} + C[/tex]
Ho il punto: [tex]P(1,-1) , trovo\>\>C[/tex] sostituendo le coordinate del punto, quindi [tex]C = \frac{11}{2}[/tex]
Ed infine trovo la y: [tex]y = ...
Salve a tutti, spero possiate aiutarmi; in pratica sto studiando il funzionamento di questi due generatori, ma c'è una cosa che non mi è chiara:
se i generatori di funzione possono generare anche forme d'onda arbitrarie, qual'è il motivo che spinge a fare uso dei generatori di forme d'onda arbitrarie?
Grazie a tutti.
Data questa funzione: $ f(z) = \frac {1}{z-i} $ devo trovare un aperto semplicemente connesso in cui ammette una primitiva
e calcolarla.
Sono andato ad intuito ma non sono convinto. La funzione presenta una singolarità in $ i $. Allora come aperto
semplicemente connesso in cui la funzione ammette primitiva ho considerato $ C - {z = x+iy: x=0, y<=1} $.
Non sono esattamente convinto.
La primitiva l'ho calcolata facendo:
$ int_{\gamma} \frac {1}{z-i} dz $ = $ 2\pi i res(f(z),i) $ = $ 2\pi i $
Che dite?
Aggiungo che ...
ragazzi, ho un problema nell' estensione in modo continuo di una funzione a due variabili nell' ortante positivo. ho una funzione continua $ z= f(x,y) $, definita solo per valori $ x > 0 $ e $ y > 0 $ , che può assumere valori compresi tra $ k $ e $ t $ entrambi > 0, mi viene chiesto di estendere continuamente questa funzione a tutto l'ortante positivo, mi sapreste indicare come fare?
ciao a tutti! ho questa serie e ne devo studiare il carattere per $ alpha in R $
$ sum_(n = \1)^(+oo ) (n^alpha-ln(1+n^alpha))/(sqrt(1-cos(1/n))) $
ho utilizzato il criterio del confronto asintotico:
$ lim_(n -> +oo )ln(1+n^alpha)/ln(n^alpha)=1 $ quindi sostituisco $ln(1+n^alpha)$ con $(n^alpha)$
$ lim_(n -> +oo )(1-cos(1/n))/(1/n^2)=1/2 $ quindi sostituisco $ 1-cos(1/n) $con $1/n^2 $
risulta dunque $ sum_(n = \1) ^(oo )(n^alpha-ln(n^alpha))/sqrt(1/n^2) $
dato che $n^alpha$ è di ordine maggiore rispetto $ln(n^alpha)$ , la serie risulta
$ sum_(n = \1) ^(oo )(n^alpha)/(1/n) $ = $ sum_(n = \1) ^(oo )(n^(alpha+1)) $
quindi la serie ...
io ho una $ x $ e un $ 0 < k < 1 $ tale che $ k < x < 1/k $, come faccio a trovare una $ f(x) $ tale che $ 0 < f(x) < + ∞ $ ?
Esempio.... Ho T: $ R^3$ -> $ R^3 $ l'applicazione lineare la cui matrice associata rispetto alla base canonica è
A= $((1,1,3),(-1,0,4),(3,2,2))$
scrivere esplicitamente l'applicazione lineare.... come?!
ciao a tutti. dovrei calcolare il volume di questo solido, definito da $ z = x^2 + y^2 $ e $ z + 2y = 3 $ . il primo è un paraboloide e il secondo un piano, fino a qua ci siamo, l'ho disegnato. stavo ragionando se era possibile sfruttare le sezioni del paraboloide ma l'equazione del piano mi complica troppo la faccenda. anche rispetto alle altre sezioni non risolvo nulla. strade scartate. qualcuno ha qualche spunto da cui partire?
ragazzi io ho questo problema, non riesco a capire come passare da un linguaggio alla descrizione della tabella delle transizioni per un pda. cioè ad esempio se ho un linguaggio che è riconosciuto per pila vuota come questo : a^n b^2n e devo scrivere la tabella delle transizioni. c'è un metodo? perchè sul libro e sulle dispense non c'è niente per farlo...
Salve ragazzi, sto facendo degli esercizi con il potenziale elettrostatico e non riesco a capire la differenza tra queste due formule:
$V = int dV = 1/(4*Pi*eps) int dq/r$ (1.1)
e $V= intE*dl$ (1.2)
In 2 esercizi mi chiede di trovare la differenza di energia cinetica di un elettrone partendo dal potenzie di un anello carico ed ho fatto $q*(Vb-Va)$ e la differenza dei potenziali l'ho trovata utilizzando la formula (1.1) e sostituendo dove opportuno le distanze.
Però adesso mi ritrovo dinanzi ad ...
Salve,
ho sostenuto l'esame di analisi 2 ma ho un dubbio su questo esercizio:
Integrale doppio in D di (x+y)dxdy con D in R^2 delimitato da: x= y^2-1 e y= 2x-1
Nella risoluzione il mio estremo di integrazione esce 0 e 3/4; ad un collega, invece, uscirebbe 0 e 5/4 .
Vorrei sapere chi dei due avrebbe ragione in quanto il mio svolgimento è stato valutato 0/10 e il suo 10/10
Vi ringrazio anticipatamente!
Salve dovrei dimostrare che la derivata di una distribuzione temperata è ancora una distribuzione temperata, come faccio?
Ciao a tutti!
Oggi, leggendo un libro di fisica, ho notato un problema che secondo me è errato:
Due lampadine uguali sono collegate in parallelo fra di loro ed inserite in un circuito alimentato da una pila. Le due lampadine si illuminano. Una delle due lampadine viene svitata dal portalampade. L'intensità luminosa della lampadina inserita nel circuito, rispetto a quella che aveva prima:
a) è aumentata;
b) rimane costante.
Il libro propone come soluzione corretta la a scrivendo che, quando le ...
Salve ragazzi,
spero possiate aiutarmi sulle trasformazioni lineari. Sono alle prese con esercizi di questo tipo:
Determinare la trasformazione lineare di IR2 in IR2 di riflessione rispetto
alla retta x-4y-1 = 0 e applicarla al triangolo di vertici A = (1, 0), B = (3, 0) e C = (2,-4).
So come fare la riflessione ma non capisco come arrivare ad applicarla al triangolo.
E poi se dovessi fare lo stesso esercizio ma avendo una retta che passa per l'origine sarebbe la stessa cosa?
Grazie mille ...
Salve,
ho questa funzione $f(x,y,z) = x^2 - xy - z^2 + y^3$ e devo trovarne il massimo il minimo e i punti di sella.
il primo step è trovare il gradiente e dove questo si annula :
- $f'_x = 2x-y$;
- $f'_y = -x + 3y^2$
- $f'_z = 2z$
i punti sono :
$\{ x = 0),(y = 0),(z = 0):}$ -----> dai risultati è un punto di sella
$\{ x = 1/12),(y = 1/6),(z = 0):}$ -----> dai risultati è un punto di minimo
adesso come si prosegue? so che dovrei calcolare le derivate seconde ma come si fa? poi posso applicare la matrice hessiana?
Salve, in un esercizio sulle serie di potenze il professore calcola il raggio di convergenza della serie e dice che la serie converge puntualmente nell'intervallo aperto $(-r,r)$, con r raggio di convergenza. Fin qui è banale. Poi studia la convergenza agli estremi, e trova che in r e -r la serie numerica non è convergente, quindi nell'intervallo chiuso $[-r,r]$ la serie di potenze non converge puntualmente e quindi neanche uniformemente e totalmente. Fin qui ci sono. Poi, dal ...
Ciao!
Ho una serie all'infinito di cui devo determinare il valore di x affinché converga.
La serie è: $ sum_(n = 1) (2x^(2n) + e^(nx))/ (n^2+n) $
Una volta svolti i calcoli, applicando il criterio del rapporto, mi esce $ 2x^2+e^x<1 $
Adesso, come faccio a calcolarmi le x affinché la serie converga?!?
Se io ho una successione( POPOLAZIONE) come questa : 1,3,8,10,11,14 come posso dimostrare che dividendo la POPOLAZIONE in due CAMPIONI, mettiamo (1,3,8) e (10,11,14) la varianza campionaria corretta (quella divisa per n-1) è stimatore corretto della varianza della popolazione?
A titolo di esempio ho provato a dimostrare anche che la media campionaria è stimatore corretto della media della popolazione, infatti facendo la medie campionarie di tutti e due i campioni e successivamente facendo la ...
Ciao a tutti , vorrei un chiarimento su un esercizio su cui ho dei dubbi. scusate in anticipo se non uso le formule sono nuovo ed è il mio primo post.
testo : data A matrice appartenente ad R(4) e dato f(x) appartenente a End (R(4)) , sia f(A) = A (trasp) - A , determinare dimensione Immagine e nucleo di f(a).
l'idea di base che ho avuto è stata svolgere la funzione con una generica matrice, ricavarmi il ker e dal teorema
dim V = dim Im + dim ker ricavarmi il resto.
ho proceduto svolgendo ...
f(x,y) = $[(|3x + y|(x + y))^5]^(1/3)$
i) determinare punti di massimo e minimo relativo;
ii) dare la definizione di differenziabilità in un punto e stabilire se f è
differenziabile in (1; 1)