Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Salve a tutti, stavo provando a risolvere questo problema:
Un conduttore cavo, di raggio interno R2 e raggio esterno R3, contiene una sfera conduttrice, ad esso concentrica, di raggio R1, carica con una quantità di carica q. Detta r la distanza dal centro del sistema, calcolare campo e potenziale per r variabile da zero all'infinito.
Avevo calcolato il campo Elettrico in tutti i punti, ma c'è un punto che non mi torna, ovvero quello col raggio compreso tra R1 e R2, dove la soluzione dice ...
Un oscillatore armonico smorzato è costituito da un blocco di massa $ m = 1.5 kg$ collegato ad una molla di costante elastica $k = 8.0 N/m$ che si muove in un mezzo che oppone una forza di attrito viscoso $R = -bv$ con $b = 0.23 (kg)/s$.
Determinare il numero di oscillazioni fatte dal blocco nell’intervallo di tempo necessario perché l’ampiezza si riduca a 1/3 del valore iniziale.
$ A e^(-gammaT)Sin(omegat+phi ) = 1/3 A$
$ e^(-gammaT) = 1/3$
$ -gammaT = ln(1/3)$
$ T = ln(1/3)/(-gamma)=ln(1/3)/(-b/(2m)) = 1.0986/0.0766 = 14,342 s$
Per far si che ...


Buongiorno a tutti,
vorrei chiedere se qualcuno possa aiutarmi/darmi delle idee per quanto riguarda la risoluzione di un problema.
Una persona fa un viaggio guidando a velocità scalare costante di 89.5 km/ eccetto nell'intervallo di tempo di 22 minuti in cui rimane ferma. Se la velocità scalare media è stata di 77.8 km/h,
a) Quanto tempo è durato il viaggio?
b) Qual è la distanza percorsa?
Grazie mille in anticipo

Salve a tutti. Qualcuno può dirmi se la risoluzione è corretta:
1) $ Wab= n 3/2 R (Tb - Ta) $ dove $ Tb = Ta (Va^(gamma -1))/(Vb^(gamma -1)) $ con gamma uguale a cp/cv.
Utilizzo la prima formula perchè il processo AB se ho ben capito è adiabatico. Quindi dato che lo scambio di calore è nullo, il lavoro è uguale alla variazione di energia interna data da ncvdeltaT. Tuttavia il risultato viene diverso da quello proposto.
Per il secondo punto invece mi è sembrato di capire che venga richiesto il COP, che si ...

Ho bisogno di qualche chiarimento sulla dimostrazione del teorema di Lagrange inerente alla esistenza di basi $phi$ ortogonali.
Prima di enunciare e riscrivere la dimostrazione, vi riporto due definizioni che mi serviranno.
Sia $V$ spazio vettoriale su $mathbb{K}$ tale che $dim(V)=n<+infty$, con $(e_1,e_2,...,e_n)$ una sua base.
$phi :V times V to mathbb{K}$ forma bilineare simmetrica.
1) Base $k$ ortogonale.
$(e_1,e_2,...,e_n)$ $k$ ortogonale ...

Buongiorno, sto risolvendo il seguente esercizio, dato uno spazio vettoriale $V$ tale che $dim(V)=3$ e sia $R={v_1,v_2,v_3}$ una sua base. Considero $g$ forma bilineare simmetrica con matrice$ G=( ( -3 , 1 , 0 ),( 1 , 2 , -1 ),( 0 , -1 , -1 ) ) $ rispetto $R$.
Voglio determinare: verificare che $g$ è non degenere, base $g$ ortogonale, segnatura di $g$, e la forma canonica associata a $g$.
Per verificare che ...
Salve,
sto facendo il seguente esercizio:
La funzione f: R -> R definita da f(x) = sin(sin(x)):
a) ha minimo ma non ha massimo;
b) non ha ne massimo ne minimo;
c) ha massimo ma non ha minimo;
d) ha sia massimo che minimo.
pongo -1

Ciao a tutti, stavo provando a svolgere il seguente esercizio:
Si consideri in $\mathbb(R)^3$ la seguente curva: $\gamma(t)=(\cos t,\sin t, t)$ con $t\in [0,2\pi]$.
Per ogni $t$, sia $S_t$ il segmento chiuso che congiunge il punto $\gamma(t)$ all'origine e si ponga $S=\bigcup_{t\in[0,2\pi]} S_t$.
Dimostrare che $S$ è una superficie regolare e calcolarne l'area.
Il mio problema è che non riesco a trovare una parametrizzazione della superficie $S$.
Ho ...

Salve a tutti, non riesco a risolvere questo esercizio che chiede: dato il paraboloide di equazione $ z = x²+ y² $, calcolare il volume racchiuso tra il paraboloide ed il piano $ z = 4 $. Imposto l'integrale triplo in cui $ z $ varia tra $ 0 $ e $ 4 $ e $ x $ e $ y $ in $ x²+ y²≤z $, però non riesco a ottenere il risultato esatto, forse perché sbaglio gli estremi di integrazione di $ x $ e $ y $. ...

Momento angolare di un punto materiale che si muove parallelamente all'asse di rotazione di un disco
Salve a tutti. Ho un dubbio sul momento angolare.
Quando abbiamo una configurazione come quella in figura, dove il vettore in verde è la quantità di moto di un punto materiale che si muove in linea retta e quello in blu la posizione del punto rispetto ad O, il momento angolare è non nullo? In teoria dovrebbe essere presente un momento angolare $ L= rp $ ma giacente sul piano perpendicolare all'asse. Tuttavia non mi è chiaro se p ed r devono appartenere entrambi al ...
Buongiorno, ho due problemi che non riesco a risolvere che non riesco a concludere, il primo di algebra, i, secondo di geometria.
1) Ho un insieme $U=\{(\beta,\alpha,2\beta,3\beta-5\alpha)\in\mathbb R^4:\alpha,\beta\in\mathbb R\}$ e uno spazio $W_k$ che ha come base l’insieme $\{(0,-1,0,k+1),(1,0,k,1),(1,-1,2,2k)\}$.
Devo determinare per quali valori di $k$ risulta che $U$ è sottospazio vettoriale di $W_k$.
Io ho scritto che $U=<(1,0,2,3),(0,1,0,-5)>$ è quindi pensavo di considerare la matrice che contiene i 5 vettori delle basi e ...

Ciao a tutti, avrei bisogno di una mano con questo esercizio:
(i) Trovare una matrice invertibile che non sia diagonalizzabile
(ii) Trovare una matrice diagonalizzabile che non sia invertibile
Il primo punto non so, non riesco a farlo, il secondo ho preso la prima matrice con determinante nullo che mi è capitata e ho provato a diagonalizzarla...
(ii) presa la matrice unitaria di ordine 2 i suoi autovalori saranno 2 e distinti, per l'esattezza \(\displaystyle \lambda_1=0 \wedge \lambda_2 = 2 ...

Ciao a tutti, è da ore che provo a capire come risolvere questi 2 problemi ma non riesco a capire dove sbaglio
PRIMO PROBLEMA: un corpo è tenuto fermo da un cavo lungo un piano inclinato privo di attrivo. Sapendo che angolo = 60° e m = 50 kg, si trovi il modulo della tensione nel cavo.
Il corpo è in equilibrio, per cui la somma delle forze è = 0.
Non c'è attrito, quindi le uniche forze presenti sono la tensione, la forza peso e la forza normale.
Per calcolare la T scrivo che ΣFx= ...

Buongiorno sto risolvendo questo esercizio da un tema d'esame del 14 gennaio 2019 e mi manca di capire un ultimo passaggio. Trascrivo il testo e il mio svolgimento.
Il limite: $lim_{n to +infty}([(n+7)^n+(1/3)^n](n^(1/n)-1)(n!+1))/((1+n)^n(n-1)!ln(n+1))$
Il risultato: $e^6$
Ho semplificato così le varie parti:
$(n+7)^n+(1/3)^n = n^n(1+7/n)^n+0 = n^n*e^7$
$n!+1 ~ n! = n(n-1)!$
$n^n(1+1/n)^n = n^n*e$
E poi ho riscritto:
$lim_{n to +infty}(n^n*e^7(n^(1/n)-1)n(n-1)!)/(n^n*e*(n-1)!ln(n+1)) =$
$lim_{n to +infty}((n^n*e^7)/(n^n*e))*((n^(1/n)-1)n)/(ln(n+1)) =$
A questo punto immagino che il secondo termine tenda ad 1, ma non riesco a capire come/perché (sempre ammesso che ...

due piani infiniti paralleli hanno una densità di carica uniforme superficiale +σ (il piano a z=d) e −σ (il piano a z = 0). i piani si muovo verso l'asse y con una velocità costante v. mi si chiede di calcolare la quantità di moto elettromagnetica nella regione di area A.
ho calcolato il campo elettrico $ vec(E)=-sigma/epsilon_0hat(z) $ ma non capisco perchè la soluzione dell'esercizio dica che $ vec(B)=-mu_0Khat(x)=-mu_0 sigma vhat(x) $
ho capito che deriva dalle condizioni al contorno di B, ma non mi è chiaro come prendere il loop ...

una carica puntiforme è al centro di un toroide di sezione rettangolare, percoso da corrente, con N spire e con raggio interno ‘a’, esterno ‘a+w’ ed altezza ‘h’, con w,h

una particella inizialmente ferma nel sistema di riferimento S è accelerata fino a raggiungere $ v_1=0.70c $ . poi viene di nuovo accelerata (nella stessa direzione), incrementando la sua velocità della quantità $ v_2=0.70c $misurata questa volta rispetto ad S’ ossia un sistema di riferimento solidale con la particella (alla fine della prima accelerazione). calcolare la velocità finale vista in S.
so che è banalissimo ma non riesco ad impostarlo

Salve a tutti, volevo chiedere se qualcuno ha la pazienza per svolgere questo esercizio e dirmi il procedimento corretto, in quanto la prof non ha caricato alcuna soluzione per i suoi esercizi, e non sono sicuro del risultato. Grazie
Un supermercato regala a tutti i clienti che effettuano un acquisto una spilla bianca o blu. Sapendo che la probabilità di ricevere una spilla blu è pari a 40%, qual è la probabilità di ricevere almeno una spilla blu effettuando 3 acquisti?

Buongiorno, devo preparare l'esame di fisica 1 per settembre e ho trovato un esercizio risolto da un mio collega che mi lascia un po perplesso. allego il testo dell'esercizio e quello della risoluzione. la parte che non riesco a capire e il bilancio. Non sono presenti forse non conservative, dunque l'energia meccanica si conserva. L'asta è inizialmente ferma, quindi l'energia cinetica rotazionale iniziale è zero, mentre non è nulla l'energia potenziale gravitazione. il problema è che ho un po' ...