Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Ciao a tutti, avrei una domanda su un semplice esercizio riguardante la riduzione per righe e il rango di una matrice con parametro.
La matrice è questa: \(\displaystyle A = \begin{pmatrix}1&0&a\\0&1&0\\a&0&1\end{pmatrix} \)
Mi viene in mente che la matrice è riducibile anzitutto per \(\displaystyle a=0 \) e in questo caso \(\displaystyle \rho(A) = 3 \).
Poi vedo che è possibile modificare il primo elemento della terza riga sommando o sottraendo alla terza riga un multiplo della prima ...


Ciao. Il titolo dice tutto, credo. Se \( P \) è un poset, la topologia dell'ordine su \( P \) è la topologia che ha per base gli intervalli del tipo \( \left]a,b\right[ \), e tutti gli intervalli del tipo \( \left[\bot,b\right[ \) e \( \left]a,\top\right] \) qualora \( P \) ammetta un minimo \( \bot \) e un massimo \( \top \), al variare di \( a,b\in P \).
Esiste un caratterizzazione di questa topologia come "la più grezza che [...]"/"la più fine che [...]", o esiste una caratterizzazione ...

Salve a tutti! Ho trovato una dimostrazione simpatica della caratterizzazione degli insiemi misurabili secondo Peano-Jordan mediante la trascurabilità secondo Lebesgue della frontiera. In questa, si fa riferimento al seguente fatto:
Un sottoinsieme di un insieme in $\RR^n$ di misura nulla secondo Peano-Jordan è ancora misurabile con misura nulla.
Questo mi ha destato qualche perplessità perché ricordavo che, durante le lezioni, la prof ha insistito molto ...

Buongiorno ragazzi,
Una delle proprietà delle matrici trasposte è che hanno lo stesso rango della matrice "di partenza":
Ovvero: $rho(A)=rho(A^t)$.
A livello "teorico" questa cosa è semplice poichè, dalla definizione di rango:
"Sia A una matrice, è detto rango della matrice A ($rho(A)$)il numero massimo delle colonne linearmente indipendenti. Si dimostra che il numero massimo delle colonne coincide con il numero massimo delle righe linearmente indipendenti di A"
E dalla ...

Salve a tutti, nell'esercizio che mi è stato proposto mi viene chiesto di dare una dimostrazione del fatto che il Gruppo $GL(n,CC)$ sia connesso seguendo questa strada.
Siano $A$ e $B$ matrici invertibili $nxxn$.
1) Dimostro che esistono solo finite soluzioni complesse $lambda$ per $det(lambdaA+(1-lambda)B)=0$.
2)Dimostro che esiste un cammino continuo $A(t)=lambda(t)A+(1-lambda(t))B$ che connette $A$ con $B$ tale che ...

Buongiorno. Mi ritrovo in difficoltà con questo esercizio, ho provato a svolgerlo semplificando i due esponenziali: il primo mi risulta $i$, il secondo $-1$ ed il terzo pure.
Da qui sostituirei $z = x + iy$ ove possibile, idem con $Re(z)$ e $Im(z)$ ma non saprei come fare per $z^2*overline{z}$. Proverei a sostituire e sviluppare tutti i calcoli ma risulterebbero termini alla terza e moltiplicati per $i$ che non so ...

Ciao a tutti, vorrei avere se possibile un aiuto su un problema che non so come affrontare:
Sia \(\displaystyle A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \). Risolvere le equazioni matriciali \(\displaystyle AX=0 \) e \(\displaystyle XA=0 \).
Ho provato a risolvere la prima equazione, ossia \(\displaystyle AX=0 \). Ma credo di aver ristretto l'insieme delle soluzioni supponendo che \(\displaystyle X \) sia una matrice in \(\displaystyle \mathbb{R}^{2,2} \). Affinché il prodotto righe ...
Salve a tutti, scusate la mia domanda ma è da un bel po' che non studiavo e quindi sono un po' arrugginito.
La fase di un numero negativo quanto vale?

Ciao a tutti, avrei bisogno di aiuto per un esercizio. La traccia è questa:
è possibile trovare una matrice quadrata di taglia qualsiasi, diversa dalla matrice identica, tale che A^2 sia la matrice identica? Ripetere per ogni A^n
Ho provato a risolvere questo esercizio ma non riesco proprio in alcun modo, mi sta facendo impazzire! Spero possiate aiutarmi

Salve a tutti.
Ho questo esercizio da risolvere (tratto da un testo d'esame) ma non so come impostarlo. Non voglio i calcoli ma se possibile solo delle linee guida. L'esercizio è cosi definito:
Studiare la funzione $z=f(x,y)$ implicitamente definita dall'equazione $F(x,y,z)= xsinx+ln(1+y^2)-z-int_{0}^{z}e^(t^2)dt=0$, riportandone inoltre lo sviluppo in serie di McLaurin al secondo ordine con resto di Peano.
Potete aiutarmi??
Grazie


Dato $ z=|z|e^(i\theta) $, sia $ f(z)=\sqrtz=|z|^(1/2)e^(i\theta/2)$. Sui miei appunti è riportato che affinchè la funzione $ f(z) $ ritorni al valore che assume in $ z=|z| $ sono richiesti due giri intorno all'origine del piano complesso. Studiando le proprietà dei numeri complessi, però, so che $ 0\le\theta<2\pi $. Come posso, quindi, eseguire due giri?
Avevo pensato di definire il dominio di $ \sqrtz $ come $ 0\le\theta/2<2pi $ da cui $ 0\le\theta<4pi $ ma non so se è corretto
Salve,
devo creare una classifica per gioco. ecco i dati:
- da 5 a 12 giocatori
- punteggi: 1° 22punti, 2° 16, 3° 11, 4° 7, 5° 4, 6° 2, dal 7° 1 punto.
- match totali 25
-match minimi da giocare per partecipante per entrare in classifica : 15
La domanda è: mi conviene usare la media aritmetica?
C'é un modo per ovviare (senza penalizzare) al problema del giocatore che non gioca tutte e 25 le partite?
Quel giocatore ha un divisore inferiore e quindi potrebbe risultare più avvantaggiato.
grazie!
"Sia \(\displaystyle f:\mathbb{R} \rightarrow \mathbb{R} \text{ funzione continua tale che} \\ 4f^2(x)-4f(x)+1>0 && per ogni x reale \\ \dimostrare che se f(x_0)=0 per qualche x_0 reale, allora f è limitata superiormente \)
\(\displaystyle \text{Ho iniziato riscrivendo l'ipotesi in questo modo: }(2|f(x)|-1)^2 >0 \text{ , questo però implica che } \\ f(x) \neq \pm \frac{1}{2} \text{ ora, i limiti di f a} \pm \text{infinito} \text{ non possono essere infiniti perché altrimenti f, per il ...

Salve a tutti.
Mi trovo per la prima volta a dover tracciare il grafico qualitativo di una funzione di cui non conosco l'equazione ma di cui ho delle informazioni. Ho seguito un procedimento e volevo condividerlo con voi per avere dei consigli o delle eventuali correzioni. Grazie.
La traccia dell'esercizio è la seguente:
Traccia il grafico qualitativo della funzione [tex]f(x)[/tex], definita e derivabile per [tex]x>-1[/tex],
passante per l'origine, con [tex]\lim_{x \to -1} f(x) = ...
Buongiorno a tutti ragazzi ho alcuni dubbi riguardanti l'argomento in oggetto.Spero che qualche anima buona mi possa aiutare in questo.
Riflessione totale per onde elettromagnetiche.
Considerando i due mezzi non magnetici e privi di perdite scrivo la legge di Snell.
$sin(theta_t)=sqrt(epsilon_1/epsilon_2)sin(theta_i)$ dove i pedici "i" e "t"indicano incidente e tramesso.
Ora qui il primo dubbio. Mi viene detto che se $epsilon_1>epsilon_2$ l'equazione non soluzioni reali per $sin(theta_i)>sqrt(epsilon_2/epsilon_1)$ perchè questa cosa?
Comunque andando ...
Ciao a tutti.
Spero che la sezione sia giusta. Non avrei mai immaginato di chiedere aiuto per un'equazione di secondo grado.
Sto studiando Campi Elettromagnetici e mi sono imbattuto in questa equazione che mi ha portato a non andare avanti perchè non raggiungo il risultato del libro
allora tralasciando tutta la noiosa parte arrivo al dunque
$ beta^2-alpha^2-i2 beta alpha =omega^2mu epsilon $
dove $mu,epsilon$ sono fasori
$beta$$alpha$ nella parte immaginaria sono vettori
proiettando sull'asse ...

Salve a tutti, ieri all'università ho provato l'esame scritto di Metodi matematici e non sono riuscito a svolgere un esercizio sulle serie di funzioni; ho anche chiesto ad altri che hanno fatto l'esame con me e nessuno è riuscito a rispondermi. Spero che qualcuno di voi sappia aiutarmi
Calcolare il dominio di convergenza della seguente serie di funzioni: $\sum_{n=1}^oo n^2 * sen(2^(1-nx))$

Buonasera a tutti, vorrei chiedere un chiarimento su un problema di termodinamica.
Ho un sistema costituito da un recipiente adiabatico, chiuso da un pistone adiabatico, mobile e senza attriti. L'interno del recipiente è diviso in due regioni da un setto conduttore: nella regione inferiore ci sono $n_A=3$ mol di un gas A, in quella superiore $n_B=1$ mol di un gas B (entrambi perfetti e monoatomici). La temperatura iniziale è $T_0=300$ K e i volumi ...