Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Vorrei discutere con voi su qualche punto del seguente esercizio:
Con la seguente risoluzione:
Il testo ci chiede di determinare in quali condizioni dopo un certo tempo sufficiente il cilindro mantiene un moto di puro rotolamento
Dai dati che ci vengono forniti dalla traccia, sappiamo che abbiamo $v_0$ velocità lineare che va verso destra parallelamente al piano inclinato, e poi abbiamo $omega_0$ che va nel verso antiorario (quindi il verso della velocità ...

Problema (Concorso di ammissione SNS). Si consideri la funzione
\[
\begin{split}
x \colon & (0,+\infty) \times \mathbb R \to \mathbb R^3 \\
& (t,\vartheta ) \mapsto ( t\cos{\vartheta}, t\sin{\vartheta},\vartheta )
\end{split}
\]
Si provi che $x$ parametrizza una superficie $S$ che ha ovunque curvatura media nulla. Determinare quindi le linee asintotiche e le linee di curvatura di $S$.
La prima parte è del tutto standard, sono tutti conti. ...

Ciao a tutti , ho letto il teorema per cui l'insieme degli zeri di una funzione analitica è formato da punti isolati .
Sotto ad esso c'è un altro teorema secondo cui una funzione analitica può essere nulla in un intorno di z0. Ma questo non vorrebbe dire che tutti i punti di quell'intorno sono zeri della funzione?
E ciò sarebbe in contraddizione con il teorema che ho citato all'inizio...
Ciao ragazzi... volevo chiedervi una mano a risolvere un integrale. Forse per voi sembrerà banalissimo, ma io contino a scervellarmi senza riuscire a risolverlo!
Eccolo qui:
$\int log^2x /x dx $
Grazie infinite a chi mi aiuterà

Ciao a tutti! Stavo svolgendo degli esercizi sulle espressioni trigonometriche e ne ho trovata una di cui non mi coincide il risultato e non capisco dove sto sbagliando Grazie in anticipo a chiunque voglia aiutarmi!
1) $ \frac{1-sen (a) -cos^2 (a)}{sen (a) cos(a)} - \frac{sen^2(a)-1}{cos^2(a)} $
Dovrebbe venire: $ 1/cotg(a) $
Dunque io la svolgo così:
$ (1-sen(a)-cos^2(a))/(sen(a)cos(a))-(sen^2(a)-1)/cos^2(a)= $
$ (1-sen(a)-(1-sen^2a))/(sen(a)cos(a)) + (1-sen^2(a))/cos^2(a)= $
$ (-sen(a)+sen^2a)/(sen(a)cos(a)) + 1= $
$ (sen(a)(-1+sen(a)))/(sen(a)cos(a)) + 1= $
$ (sen(a)-1)/(cos(a)) + 1= $
$ cotg(a)-sec(a) + 1= $

L'esercizio è il seguente:
Una molla ideale di costante elastica $k = 1000 N/m$ è posta su un piano inclinato di $30°$ rispetto all'orizzontale. Un blocco di massa $500 g$ è posto fermo a distanza $2 m$ dalla molla non compressa. Il corpo parte con velocità nulla. Calcolare la velocità con cui il blocco raggiunge l'estremo libero della molla e la massima compressione della molla:
a) se il piano inclinato è liscio
b) se è presente un attrito dinamico di ...

mi potete aiutare a farmi capire
calcolare il campo di esistenza di una funzione:
\( g= \frac{\sqrt{4-(\log{}^{}_{\phantom{1}\frac{1}{2} }(x)+1)^2 } }{arccos(\frac{x}{2}) } \)
grazie mille

Salve ho un piccolo dubbio: quando per il calcolo dei massimi e minimi di una funzione a 2 variabili, impostiamo il sistema (condizione necessaria) per trovare i punti da studiare, se ottengo dei valori complessi sono accettabili o no?

Salve,
mi chiedevo che esiste una funzione il cui integrale generalizzato da 1 a più infinito converga, ma la funzione non tende a 0 per x che tende a più infinito.
Ciao a tutti,ragazzi.
Spero stiate trascorrendo in serenità le vostre vacanze.
Ho un semplice dubbio che mi assilla;
come si scrive un polinomio complesso in una indeterminata x ad esempio di grado 3?
E' forse del tipo
$a_0$ + $a_1$x+ $a_2$ $x^2$ + $a_3$ $x^3$
dove x= y+iz?
quindi ad esempio P= $a_0$+$a_1$ i -$a_2$ +$a_3$?
Posso trovare soluzioni anche del tipo P[5+6i], ...

Mi sa che non mi sono ben chiari i concetti introduttivi sulla complessificazione di uno spazio vettoriale, perché non capisco questo:
Dato $v ∈ V_C$, il sotto-C-spazio vettoriale generato da $v$ e dal suo coniugato $ bar(v) $ è sicuramente reale. Tale sottospazio ha dimensione 2 se e solo se v e $ bar(v) $ sono linearmente indipendenti.
Mi chiedo: il sotto-C-spazio vettoriale generato da $v$ e dal suo coniugato $ bar(v) $ è questo: ...

Ho una comunissima funzione a gradino
\( f(x)=\begin{cases} 1, & \mbox{se }x \in (0, 1) \\ 0, & \mbox{se }x \in (-\infty, 0] \cup [1, \infty)
\end{cases} \)
ove (0,1) è un aperto. Questa funzione (sperando di averla scritta correttamente) è discontinua in 1 e 0. Io vorrei mostrare, usando la topologia, che è discontinua. Che topologia devo dare all'insieme immagine? Credo di essermi perso in un bicchiere d'acqua

Ciao a tutti ragazzi, sono qui per parlarvi di un problema che ho con la fisica 2 in questo momento.
Dopo aver avuto difficoltà nello studiare fisica I, esame poi superato e che mi è molto piaciuto, sono tornato perché ho difficoltà con Fisica 2 (il modulo sull'elettrostatica, accenni alle onde elettromagnetiche e così via).
Vado subito al dunque: il mio problema non è risolvere determinati esercizi, bensì è proprio il non saperli fare che mi blocca. A differenza di Fisica 1 dove studiavo il ...

Avevo un dubbio riguardo a cosa fare quando l'equazione associata di una successione ricorsiva del tipo
$a(n)=pa(n-1) +qa(n-2)$
ha il discriminante negativo ( notare che (n),(n-1) e (n-2) dovrebbero essere pedeci, ma non so come scriverli ). So che dette R1 e R2 le soluzioni dell'equazione associata, abbiamo che
$a(n)=c(R1)^n +d(R2)^n$ (1)
dove c e d si ottengono imponendo l'equazione vera per a(0) e a(1).
Tuttavia in alcuni casi mi tornano risultati impossibili. Se per esempio ...

Salve, ho il seguente esercizio:
$$\begin{cases}
x(n+1)-2x(n)=a(n), & n\geqslant 0 \\[2ex]
x(0)=0, &
\end{cases}$$
dove $a(n)=n\tan(n\frac{\pi}{3})$
Vi posto il mio svolgimento:
$$z\ X(z)-2\ X(z)= \mathcal{Z}[a(n)] \ \rightarrow \ X(z)=\frac{\mathcal{Z}[a(n)]}{z-2}$$
Iniziamo con $\mathcal{Z}[a(n)]$:
$$\mathcal{Z}[a(n)]=-z\ \frac{\partial }{\partial z}\left \{ \mathcal{Z}[\tan(n\frac{\pi}{3})] \right ...

Ciao ragazzi! Ho svolto un po di esercizi ultimamente ma su alcuni purtroppo ho dei dubbi in quanto non coincidono le risposte e non capisco dove sbaglio Ringrazio anticipatamente chiunque abbia la pazienza di aiutarmi!
1) Date le rette di equazione y=-3x+2 e y=9y-3x+6=0 dire se sono:
a)perpendicolari
b)si intersecano nell'origine degli assi
Per me la risposta giusta è la (a) visto che che il prodotto dei due coefficienti viene -1 concludo che sono perpendicolari ma la risposta ...

Dovrei risolvere la seguente equazione:
\(\displaystyle (\frac{z+1}{z-1} )^3 = 1 \)
Non so mettere le parentesi grandi per comprendere tutta la frazione, però si capisce abbastanza... Io l'ho risolta così:
\(\displaystyle \frac{(z+1)^3}{(z-1)^3} = 1 \)
\(\displaystyle (z+1)^3=(z-1)^3 \)
Ho risolto i cubi ed ho ottenuto una semplice equazione complessa:
\(\displaystyle z^3 +3z^2+3z+1=z^3-3z^2+3z-1 \)
Che porta subito alle due soluzione:
\(\displaystyle z_k = \pm i \frac{1}{\sqrt(3)}\)
C'è ...

qualcuno saprebbe dirmi se è giusto questo procedimento?
$lim_((x,y)->(0,0)) (log(1+xy))/(x^2+y^2)$
per $y=0$ si ha $f(x,0) = log(1)/x^2$ e dunque $lim_(x->0) f(x,0) = 0$
per $x=0$ si ha $f(0,y) = log(1)/x^2$ e dunque $lim_(y->0) f(0,y) = 0$
provo a semplificare il limite con il limite notevole $log(1+x)/x=1$ nel nostro caso moltiplico e divido per $xy$:
$(log(1+xy))/(x^2+y^2) = (log(1+xy)xy)/((x^2+y^2)xy)$ $=$ $ (xy)/(x^2+y^2)$
ora considero la restrizione $x=y$ e ottengo:
$x^2/(x^2+x^2) = x^2/(2x^2) = 1/2 $
e ...

limiti esercizio esame... mi potete spiegare e farmi capire per favore...vi prego.. grazie mille...
si studi il limite
\( \lim_{x\rightarrow 0} 3log(4x-2sin(2x)+1)cos(tan(x))\div 8x^2cos(x+\pi )arctan(x) \)

Ciao ragazzi.
Mi potreste spiegare come il libro risolve questo esercizio?
1. Non capisco perchè studia solo l'argomento del logaritmo
2. Facendo "normalmente" cioè studiando la funzione completa arrivo comunque a considerare come punti stazionari i punti dei due assi, ma poi non capisco perchè dice che sono tutti di minimo
Grazie