Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
thegeekbay1
Buonasera a tutti! Sto cercando di risolvere questo limite di funzione. Il risultato dell'esercizio deve essere $ e^3 $ , ma non riesco ad arrivarci. $ lim n -> infty\ ((n^(n+3)-log(n^16+n^27)+3n^(n+1))^(n^2))/n^(n^3+3n^2 $ Ho provato in diversi modi, mettendo in evidenza sia al numeratore che al denominatore il valore $ n^(n+3) $ , ma il massimo del risultato che ottengo è 1 al numeratore, mentre al denominatore non so se continuare lo svolgimento trasformando la radice in una potenza e successivamente mettere in evidenza sempre ...

Planets
Ciao a tutti! Sto facendo fatica a capire come procedere con questo problema: Si consideri un tubo di sezione circolare costante di raggio r=0,2 cm. Una estremita del tubo viene incurvata di un angolo di 90. Il tubo viene posizionato appena sotto il pelo libero di una corrente uniforme d‘acqua. L'asse del tubo è parallelo al vettore velocità della corrente. In tale condizione si osserva un getto d'acqua verticale il cui diametro, misurato a 3 cm dal pelo libero dell'acqua, è il doppio di ...

Trivroach
Sto cercando da qualche parte una dimostrazione non troppo complicata (=comprensibile) del Teorema di Stokes... Chiedo a voi se qualcuno conosce delle dispense o del materiale online da consigliarmi. So che ci sono delle varianti e si può enunciare in diversi modi; quello che dovrei dimostrare io, è fondamentalmente questo (metto l'introduzione prima della formula): "Sia $ Sigma:(u,v)inA->(x(u,v),y(u,v),z(u,v))inR^3 $ una superficie regolare, con $ SigmainC^2(A) $ . Sia $ gamma(t)={ ( u=u(t) ),( v=v(t) ):} $ una curva che parametrizza ...
3
11 lug 2016, 14:21

Fausto11
Quando sono alla ricerca dei massimi e minimi locali di una funzione, per prima cosa cerco i punti critici, cioè quelli in cui si annulla il gradiente. Poi vado a studiare la matrice Hessiana in questi punti e, in base a questa, capisco se sono massimi, minimi o selle. Il problema per me sorge quando l'Hessiana ha determinante nullo o è complicata come in questi casi: 1) Sia $ f: (R^2\{(0,0)} $ x $ R) → R $ con $ f(x,y,z) = (y+z^2+x)/(x^2+y^2) $ Stabilire se ha max, min locali Ho calcolato il ...
1
11 lug 2016, 09:19

Oibò93
Ho dei dubbi su come affrontare la risoluzione di questo esercizio: Aldo e Bruno lanciano ciascuno una volta lo stesso dado. Vince chi realizza il numero più alto. Se i numeri sono uguali, lanciano una moneta e vince Bruno se esce croce. a)Qual è la prob che vinca Bruno senza ricorrere alla moneta ? Sarei tentata di risolverlo in due diversi modi: - Poichè Bruno può vincere , perdere o pareggiare direi che questa probabilità è pari a $ 1/3 $ -Perchè Bruno vinca, Aldo deve ...
2
11 lug 2016, 15:18

Rabelais
Ciao a tutti, sono nuovo nel mondo della ricerca operativa, non ho dispense su cui studiare, ho cercato qui e in rete ma non ho trovato niente. Potreste aiutarmi a capire come compilare la tabella (vedi sotto) date le due stringhe s = A T T C T C A C A A T G C T T C T A t = A C T A T C A G T C A A C C T A T L'obbiettivo è trovare la più lunga sottosequenza comune. Mi va bene anche una dispensa/sito dove è spiegato il procedimento, o il nome dell'algoritmo così posso studiarlo, grazie!

f4747912
Ragazzi ho questa funzione $ln|lnx|+1$ ho calcolato il dominio ragionando in questo modo ho posto l'argomento del log maggiore di zero, ma essendoci valore assoluto la condizione risulta soddisfatta.. quindi ho detto che la lnx deve essere diversa da 0 e x maggiore di zero.. quindi $]0;1<span class="b-underline">1; +oo[$ ora andando a fare $ lim x->0 ln(lnx)+1$ sarebbe $ln(-00)$ il valore assoluto va tolto perchè siamo a x maggiore di zero... Qualcosa non va.
9
11 lug 2016, 12:37

Giobbo89
Eccomi con un altro esercizio e altri dubbi Il testo dell'esercizio e relative domande è questo: http://i.imgur.com/lTMcjNv.png Allora, provo ad andare con ordine: 1) questo è uno dei quesiti che mi da problemi (o almeno penso). A me verrebbe da calcolare il numero di disposizioni con ripetizione in modo da avere tutti i possibili casi. Quindi $n^k=26^10$ possibili casi. Dopodiché andrei a contare quanti casi soddisfano il quesito, quindi un solo caso favorevole moltiplicato per ...
4
11 lug 2016, 13:43

giuseppe.abbruzzese.7
Salve ragazzi, Vi allego il link dei miei appunti di Algebra lineare, Vi chiedo se potete controllarli per vedere se sono corretti, https://drive.google.com/file/d/0B7Ogbx ... sp=sharing Aspetto un vostro riscontro, grazie in anticipo

Oibò93
Salve ragazzi, ho dei problemi con questo esercizio, potreste aiutarmi? Ecco il testo: Con quale probabilità il numero telefonico di una persona incontrata a caso termina con due cifre entrambe pari a 9? Io avevo pensato di risolverlo in questo modo: E= evento per cui il numero sia diverso da 9 B= evento per cui il numero sia 9 Pr(che il num termini con due cifre pari a 9)= Pr(E)*Pr(E)*Pr(E)*Pr(E)*Pr(E)*Pr(E)*Pr(E)*Pr(E)*Pr(B)*Pr(B)= 9/10*9/10*....*1/10*1/10= (9^8)/ (10^10) Però in questo ...
4
11 lug 2016, 12:47

Sk_Anonymous
Esercizio/problema. Data \(f \in \mathcal{C}^1_c(a,b)\), mostrare che vale \[ \|f \|_{L^p (a,b)} \le \frac{b-a}{p^{1/p}} \|f'\|_{L^p (a,b)} \] per \(p \in [1,\infty[\).
3
10 lug 2016, 14:14

Davide Legacci
Salve a tutti. Sono un po' lesso e mi sto sicuramente perdendo in un bicchier d'acqua, ma la questione è la seguente: dati due campi vettoriali (sezioni del fibrato tangente) $ X_{1},X_{2} : \quad RR^{3} \rightarrow TRR^{3} $ che generano la distribuzione liscia $ \mathcal{D} $, si tratta di verificare se $ \mathcal{D} $ è involutiva e quindi integrabile. Il calcolo dovrebbe essere estremamente semplice, ma mi perdo qualcosa. I campi sono $X_{1}=x \partial_{1} + \partial_{2} + x(y+1) \partial_{3} $ $X_{2}= \partial_{1} + y \partial_{3} $ indicando con $ \partial_{i} $ gli elementi del ...

Orepex
Salve Sto preparando l'esame di statistica applicata e non riesco a risolvere un punto di un esercizio Ve lo scrivo Sia X una v.c. normale con media $\mu$ e varianza 9. Dato un campione casuale con n=25 osservazioni, ed il sistema di ipotesi H0:$\mu$=2 contro H1:$\mu$$>$2, se si rifiuta H0 quando la media campionaria supera la soglia 2.768931, determinare a) la significativita' $\alpha$ associata al test b) il p-value se si osserva ...
3
5 lug 2016, 23:00

triolo_marco
Buongiorno a tutti, sono nuovo su questo forum e mi scuso anticipatamente se ho sbagliato qualcosa quindi correggetemi se sbaglio ... Comunque ho un piccolo problema su questi esercizi non saprei da dove iniziare a farli: 1)Trovare un'equazione cartesiana per un piano passante per P = (-1,-2,0) e ortogonale al piano b : -y+2z=6 2) Trovare un'equazione parametrica per una retta passante per P = (-1,-2,0) e parallela sia a b che al piano x=0 Inoltre ho anche una domanda ortogonale e parallelo ...

mefisto18
Buongiorno, posto qui un esercizio che mi ha dato qualche difficoltà. siano date due v.c. indipendenti X e Y distribuite secondo una normale di media 1 e varianza 1 calcolare la probabilità che \(\displaystyle P((X-Y)^2> 2) \) quindi: considerando che X e Y sono indipendenti ho definito Z=X-Y anch'essa indipendente di media 0 e varianza 2. quindi \(\displaystyle P(Z*Z> 2) \) La mia domanda è posso calcolare come \(\displaystyle P(Z>2)*P(Z>2) \) separatamente come prodotto delle due ...
4
11 lug 2016, 10:02

Kernul
Salve! Ho fatto questo esercizio in cui devo trovare i punti di massimo e minimo della seguente funzione: $f(x,y) = arctan(y^4 x)$ Trovo un punto $A(0, 0)$ e ho il determinante del hessiano nullo. A questo punto decido di usare il metodo del segno, cioè: $f(x, y) - f(0, 0) >= 0$ siccome $f(0, 0) = 0$ ho semplicemente $f(x, y) >= 0$, cioè $arctan(y^4 x) >= 0$ Se applico la tangente si a a destra che a sinistra della disequazione mi trovo con $y^4 x >= 0$, la quale ha soluzione ...
6
10 lug 2016, 21:57

Giobbo89
Ciao a tutti. Ringrazio sin da ora chi avrà la pazienza e la voglia di risolvermi questo piccolo dubbio. Ho dubbi relativi a questo esercizio: In una corsa di cani si affrontano 8 cani C1, C2, . . . , C8. Gli esiti di questa corsa sono del tutto imprevedibili, nel senso che tutte le permutazioni degli 8 cani sono ugualmente probabili come ordine di arrivo. Scommetto sugli esiti di questa corsa; una volta conclusa, alcune informazioni su tali esiti mi sono comunicate tramite apposito sito ...

viper19920
salve, come da titolo sto trovando difficoltà con questo esercizio e relativo Problema di Cauchy. Il testo mi dice : determinare l'integrale generale dell'equazione differenziale y'=(2/x)y-(2/x^2) e risolvere il PC y(1)=1. Procedo dividendo per dy ma poi non so proseguire in quanto mi vengono nuemri strani cioè mi si elimina la y e rimane 3 e non posso risolvere il problema di cauchy in quanto non posso sotituire 1 alla y e 1 alla x

aaagggaaa
mi potete aiutare??? Un'asta rigida omogenea di massa 2Kg che può ruotare senza attrito attorno ad un asse orizzontale passante per il suo estremo O, è lasciata cadere da ferma dalla posizione di figura con α=30°. Si trovi la componente radiale e tangenziale della reazione dell'asse sull'asta nell'istante in cui inizia il moto. Si trovi inoltre la componente radiale e tangenziale della stessa forza nell'istante in cui l'asta passa per la posizione di equilibrio. l=50 grazieee

NoSignal
Siano $X$ e $X'$ due insiemi contenuti rispettivamente nelle topologie $tau$ e $tau '$ e $Y$ e $Y'$ due insiemi contenuti rispettivamente nelle topologie $alpha$ e $alpha '$, supponiamo che tali insieme siano non vuoti: mostrare che se $tau sub tau '$ e $alpha sub alpha '$ allora la topologia prodotto su $X' xx Y'$ è piu fine della topologia prodotto su $X xx Y$; Questo è un ...
1
10 lug 2016, 20:48