Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Ciao a tutti..provavo a fare questo problema ma purtroppo non torna!
Due cilindri $C_1$ e $C_2$, di masse $m_1$, $m_2$ e raggi $r_1$, $r_2$, rotolano senza strisciare su due piani inclinati e sono collegati tra loro da un filo inestensibile come è mostrato in figura http://imageshack.us/photo/my-images/84 ... nebtt.png/ . $C_1$ scende mentre $C_2$ sale. Le masse del filo e della carrucola sono trascurabili. Quanto vale l'accelerazione ...
http://imageshack.us/content_round.php? ... ad&newlp=1
Avrei 2 punti di questo esercizio da risolvere
Sulla prima domanda, penso che l'impostazione sia corretta, affiancando il numero di Reynolds alla portata massica e mettendo a sistema le due relazioni
Il problema è il secondo e il terzo punto: per quanto riguarda il secondo punto, dall'equazione dell'en meccanica, so che la variazione di en cinetica e potenziale è trascurabile, ma come faccio a capire se è trascurabile la variazione di pressione? R sono le perdite di carico, ...
Un oggetto inizialmente a riposo si rompe a seguito di un’esplosione in due parti di massa m1 ed m2; la parte con massa m2 possiede due volte l’energia cinetica di quella con massa m1. Qual è il rapporto tra le due masse? Quale delle due masse è la più grande?
Ho pensato eguagliando le energie avrei:
[tex]\frac{1}{2}m_2V_2^2=2(\frac{1}{2}m_1V_1^2)[/tex]
[tex]\frac{1}{2}m_2V_2^2=m_1V_1^2[/tex]
Da cui la massa più grande è la seconda e il rapporto è ...
Salve a tutti. Mi ritrovo a risolvere:
Determinare la trasformata di Fourier del prolungamento periodico a $]-oo, +oo[$ di periodo 2, della funzione:
$f(t) = t^2 "se " 0 <= x < 1$
$f(t) = t "se" 1 <= x < 2$
Cercando su internet ( non l'avevo negli appunti di analisi3 ), ho trovato la formula di poisson che sembrerebbe tornare al caso mio:
$ cc(F)( f(t) )(y) = sum_(k=-oo)^(+oo) cc(F)( f_T(t) )( y ) e^(2 pi i t/T) $
avendo definito $f_T(t) = f(t) * cc(X)_(\[ 0\,T \])$ con $cc(X)$ funzione caratteristica.
Allora deduco da qui che mi servirebbe ...
Salve ragazzi il mio prof ha svolto questo esercizio, trovare l'ordine di infinitesimo della seguente funzione:
\(\displaystyle f(x)=xlnx + sin^2x \)
In pratica nello svolgimento non ha per nulla considerato il seno, mi sapreste dire perchè? perchè tende a zero?
Ed infine come si può fare per dire che è impossibile che risulti il limite di:
\(\displaystyle \frac{xlnx}{x^\alpha} \) uguale a un qualsiasi K diverso da zero per x che tende a zero?
Ma lo svilluppo di taylor di \(\displaystyle ...
Ciao a tutti,
eccomi di nuovo quì per chiedervi un aiuto...
Ho preso dei vecchi compiti dati dal mio Prof e tra questi ne ho trovati due che mi lasciano perplessa.
# Calcolare l'integrale $\int_T1/(x^6) log ((x^4-y^2)/(x^5y)) dxdy$ con $T= {(x,y) in RR^2 : x^2/9 <= y <= x^2/3; 1/2 <=xy<=2}$
La seconda parte con $1/2 <=xy<=2$ mi lascia un pò perplessa e credo che in questo caso l'assistente abbia sbagliato a scrivere una $y$ di troppo dato che ho già la $y$ in funzione della $x$. Valutando così l'esercizio ...
Ragazzi, vi propongo questo esercizio:
Calcolare il limite nel senso delle distribuzioni di:
[tex]\delta - u(t-n) - \delta_n[/tex]
Calcolando il limite dei singoli addendi, avrei:
$<delta, \varphi(t)> = \varphi(0)$
Banalmente
$<delta_n, \varphi(t)> = <delta, \varphi(t-n)> = 0$
In quanto $\varphi$ è a supporto compatto, e per $n->oo, t-n -> -oo$, $\varphi$ dovrebbe essere 0.
$lim_(n->oo) int_(-oo)^(oo) u(t-n) \varphi(t) dt$
Su questo ho dubbi. Tecnicamente, per $t-n -> -oo, u(t-n) = 1$. Dunque, credo che l'integrale si riduca ...
salve
qualcuno mi può aiutare con le equ. differenziali?
L'esercizio è il seguente: $ y''+ [(y')/(x)]= [(5)/(x)] $
risolvere il Pb di Cauchy: $ y(-1)=1$ , $ y'(-1)=-1 $
Io non saprei proprio da dove inziare...
infatti la prof ha spiegato solo le equ.diff del 1 ordine (lineari e a variabili separabili) e quelle del 2 ordine lineari e a coeff costanti (metodo della somiglianza, matrice wronskiana, equ. caratteristica) omogenee e non
Questa invece mi sembra a coeff non costanti... come posso ...
Allora mi sto dedicando infruttuosamente da un po' di tempo a questo problema di conteggio:
Presi due insiemi $N$ $X$ quante sono le funzioni arricchite, cioè tutte quelle funzioni di cui l'insieme composto dalla retroimmagine di un elemento $x$ possiede un ordine per ogni elemento $x$$inX$, con $X$ non distinguibile ed $|N|=n$ e $|X|=x$?
Un esempio è il seguente: $f,gN\toX$ se ...
Buongiorno a tutti!
Oggi volevo parlare di equazioni differenziali a derivate parziali, risolte con il PDE tool di matlab.
Sto riscontrando un po' di problemi ad utilizzarlo, vi spiego immaginando un problema:
u=u(x,t) con 0
salve, io ho questo problema
http://img221.imageshack.us/img221/483/schermata20111216a09415.png
fino a trovare x e y ok... ma poi no ncapisco come ha fatto a troavre i versori i e j... qual è la relazione che li lega insomma...
sulla teoria c'è una parte sugl iangoli di Elulero.. ma non è per niente chiara...
é presente un condensatore piano collegato a un generatore e sono noti:
S, cioè l'area delle armature del condensatore;
d, cioè la distanza tra le due armature;
K, cioè la permittività relativa, nella forma K=1/(1-az) con a costante nota, e z sarebbe l'asse z perpendicolare alle armature condensatore;
v, cioe la d.d.p.
\( \epsilon \), cioè la costante dielettrica relativa nel vuoto.
La richiesta è quella di calcolare la capacità del condensatore. io avevo pensato di sfruttare C=(\( \epsilon ...
Salve !
Spero che i forumisti possano darmi qualche indicazione.
Un argomento che mi ha sempre "incuriosito" è la curvatura delle superfici. In particolare, il fatto che la curvatura di una superficie è misurabile senza lasciare dalla superficie (osservazione dovuta a Gauss, credo).
Cioè determinare la curvatura di una superficie in uno spazio 3D è cosa relativamente ovvia, ma giungere alla conclusione che una superficie è curva rimanendo sulla superficie è invece una cosa meno banale.
Un ...
Salve a tutti,
vorrei chiedere il vostro aiuto riguardo ad una dimostrazione relativa alle funzioni misurabili:
sia $\Omega sube R^n$ misurabile e $f:\Omega\rightarrowR$
allora dirò f è misurabile se in maniera equivalente
1)$AA t in R$ l'insieme ${x in \Omega: f(x)<t}$ è misurabile
2)$AA t in R$ l'insieme ${x in \Omega: f(x)>=t}$ è misurabile
3)$AA t in R$ l'insieme ${x in \Omega: f(x)>t}$ è misurabile
4)$AA t in R$ l'insieme ${x in \Omega: f(x)<=t}$ è misurabile
Si può dimostrare che ...
Ragazzi ho la seguente relazione
$S={1,2,3,4,5,6} e P={2,4}$
$X, Y in P(S)$
$X sigma Y <=> X uu Y sube Y uu X$
Qualcuno mi può dire se è di ordine questa relazione?
Ciao a tutti
ho un esercizio da svolgere del quale fatico a capire il testo
provo a postarlo qui, magari qualcuno di voi, se conosce questo tipo di esercizio può indicarmi che cosa si richiede
Vi riporto il testo così com'è scritto:
calcolare il valore della serie
[tex]\displaystyle\sum_{n = 1}^{\infty} \frac{1}{(2n)^{2}} = \frac{1}{2^{2}} + \frac{1}{4^{2}} + \frac{1}{6^{2}} + \cdots[/tex]
utilizzando la serie di Fourier nei punti $x=0$ e $x=1$
non ho altro in ...
\(\displaystyle x^\alpha \) [\(\displaystyle \sqrt{x} \) \(\displaystyle ln (1 + \frac{1}{x} \)) \(\displaystyle - sen(\frac{1}{\sqrt{x} }) \)][\(\displaystyle x-senx \)]
il senx nello svolgimento del mio prof dell'ultima parentesi è stato trascurato...per poi moltiplicare la x con \(\displaystyle x^\alpha \) facendo venire davanti a tutta l'espressione x elevato alla alpha più uno...ma poi come si precede con taylor?
In che modo si può risolvere, rigorosamente, questo problema:
Sia $f : \mathbb{R}_{+} \to \mathbb{R}$ uniformemnte continua.Provare che esiste $K>0$ tale che per ogni $x\in \mathbb{R}_{+},$
$ \Sup_{w>0}\{ |f(x+w) -f(w)|\}\le K ( x + 1)}.$
$2log(x-50)/((x-50)^3-10)$ io ho fatto: $(x-50)^3-10!=0$ e $x!=40$ per quanto riguarda lo studio del segno $x>40$ e $2log(x-50)=0$ poi $x>50$
il denominatore è abbastanza grande se svolto,non vedo altra maniera,illuminatemi voi grazie!
p.s. riguardandola penso si faccia invece così $(x-50)^3-10!=0$
$x!=50+(root(3)10)$
Salve a tutti! Ho un problema con questo esercizio..qualcuno può aiutarmi?
L'esercizio è il seguente:
Un PLC vine utilizzato pergestire la seguente applicazione: " si deve gestire un dispositivo di campo con un ritado di 8 secondi dalla commutazione di un selettore su ON e disattivarlo con un ritardo di 4secondi dopo la commutazione del selettore su OFF"
in tale contesto si chiede di:
1) rappresentare lo schema elettrico funzionale che risolve l'applicazione proposta
2)convertire tale schema ...