Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Desirio
Sia $f: R -> R$ la funzione così definita: $f(x) = 0 \forall x \in Q$ e $f(x) = x \forall x \in R/Q$. Sia $f: (R, T) -> (R, E)$ una mappa dove con T ho indicato una topologia su $R$ e con $E$ ho indicato la topologia euclidea su $R$. Voglio trovare tutti gli aperti della topologia meno fine fra quelle che rendono $f$ continua. Ora, il problema è che non riesco a capire come fare per cercare la meno fine fra quelle che la rendono conitnua... Intanto ...
3
11 ago 2021, 16:44

freekiller
Buonasera, dovrei trovare forma canonica di Jordan e matrice Jordanizzante di: $ A =( ( 8 , 6 , -4 ),( 0 , 2 , 0 ),( 9 , 9 , -4 ) ) $ Ho trovato la matrice di Jordan come $ J =( ( 2 , 1 , 0 ),( 0 , 2 , 0 ),( 0 , 0 , 2 ) ) $ e quando procedo per trovare la matrice di cambio di base mi perdo. Questi i miei passaggi: 1. Trovo il $ ker (A-\lambdaI)= <((2), (0), (3)),((0), (2), (3))> $ 2. Provo a trovare l'ultimo autovettore generalizzato con: $ ( ( 6 , 6, -4),( 0, 0, 0 ),( 9, 9, -6) )* ((0), (0), (1))=((-4), (0), (-6)) $ ma non mi trovo più. Dove sbaglio? Grazie

wattbatt
Non mi pare di aver mai visto un teorema riguardo ciò, quindi mi chiedo: se una funzione è derivabile è continua, ma la derivata stessa? E' sicuramente continua anch'essa? Ho provato a pensare a controesempi ma non mi viene in mente nessun punto in cui la funzione sia derivabile, ma la derivata non è continua
8
3 lug 2021, 11:08

Gianluk3
Salve a tutti, stavo provando a fare l'esercizio: $f_n(x)= n*e^(-nx^2)$ e mi sono sorti dei dubbi per quanto riguarda sia la convergenza puntuale che uniforme. Io sò che per vedere se converge puntualmente, devo vedere l'insieme di convergenza di $f_(oo)(x)$ e controllando come viene svolto, vengono analizzati separatamente i casi $x=0$ e $x in RR \\ {0}$. Perchè viene fatta questa distinzione? Perchè la $x$ per la puntuale viene fissata, e non mi sembra dia ...
17
11 ago 2021, 12:59

SilvyF1
Salve, ho provato a svolgere questi due esercizi, ho provato a svolgere entrambi, solo con l’esercizio numero 12 sono riuscita a calcolare il modulo del vettore $\vec c$ ma non mi vengono gli angoli indicati nella rispettiva soluzione. Mentre l’esercizio numero 18 non riesco a capirlo come risolverlo. Se per favore potreste darmi una mano? Esercizio 18. Considera i tre vettori $\vec a$ , $\vec b$ e $\vec c$ in rappresentanzione cartesiana. Sapendo che le ...

itisscience
devo studiare massimi e minimi di $ f(x,y,z)=x^2+y^2+z^2+x+y+z $ su $ E={x^2+y^2<=4,|x-y|<=2<=z<=3} $ . cerco dapprima i punti critici interni ad E vedendo quando si annulla il gradiente: $ (2x+1,2y+1,2z+1)=(0,0,0)<=>(x,y,z)=(-1/2,-1/2,-1/2) $ che tuttavia è un punto che non appartiene ad E perchè trovo un assurdo se sostituisco $ (-1/2,-1/2,-1/2) $ a $ 2<=z $ trovando $ 2<=-1/2 $ è corretto?

itisscience
l'esercizio mi chiede di trovare massimi e minimi di $ f(x,y)=x^2+y^2 $ su $ M={(x,y)∈RR^2:|x|+|y|<=1} $ . dallo studio del gradiente della funzione ho trovato (0,0) come punto critico che concludo essere un punto di minimo assoluto essendo la funzione $ >=0 $ . passo allo studio della frontiera: noto la simmetria di f e di M quindi studio solo l'insieme $ E={(x,y)∈RR^2:x+y=1,0<x<1} $ quindi la funzione $ g=f(x,1-x) $ che ha punto stazionario $ 1/2 $ che è un candidato insieme agli spigoli ...
10
11 ago 2021, 09:04

andretop00
Salve, potreste spiegarmi il passaggio in cui nel metodo Tredgold per il dimensionamento del volano si pone che $1/2 d/(d(theta))(J(theta))omega^2=-C_i(theta)$. Non capisco per quale motivo si può considerare quel termine uguale a una coppia di inerzia. Grazie
11
1 lug 2021, 12:35

mklplo751
Salve, continuando a vedere alcune cose di Geometria 2, stavo vedendo un altro esercizio del Manetti, ovvero il 5.25. La traccia è "Sia $(X, \tau)$ uno spazio topologico compattamente generato e $Y$ uno quoziente topologico di $X$ di Hausdorff, allora $Y$ è compattemente generato" (per compattamente generato intendo che $C \subset X$ è chiuso se e solo se $C nn K$ è chiuso in $K$ per ogni $K$ compatto in ...
10
9 ago 2021, 14:40

itisscience
$ f(x,y) $ vale $ (x^2-y^2)/(|x|+|y|)arctanx $ quando $ (x,y)≠(0,0) $ e $ 0 $ quando $ (x,y)=(0,0) $ . inizio studiando la continuità in $ (0,0) $ : il primo controllo che ho fatto è stato $ lim_((x,y) -> (0,0)) f(x,mx)=lim_((x,y) -> (0,0))(x^2-(mx)^2)/(|x|+|mx|)arctanx= $ e poichè $ x^2>=0=>x^2=|x^2|=|x|^2 $ allora $ lim_((x,y) -> (0,0))(|x|^2(1-m^2))/(|x|(1+|m|))arctanx=0 $ quindi procedo con una stima dall'alto sfruttando che $ x^2-y^2=(|x|+|y|)(|x|-|y|) $ allora $ |f(x,y)|=|(x^2-y^2)/(|x|+|y|)arctanx|=(|x|-|y|)arctanx <= (|x|-|y|)pi/2 ->0 $ quando $ (x,y)->0 $ concludo quindi che f è continua in (0,0). è anche continua in R^2\(0,0) perchè rapporto ...

Gianluk3
Salve a tutti, mi sono imbattuto in questo esercizio e mi sono venuti un pò di dubbi: $\sum_{n=2}^ ∞ (-1)^n * (a_n - a_(n+1)) $. L'esercizio dà come "dato" che $\sum_{n=2}^ ∞ (-1)^n * (a_n) = S$ e chiede di determinare a quanto converge la serie di partenza. E' giusto dire che la serie di partenza converge a 0? Perchè io posso separare la serie come $\sum_{n=2}^ ∞ (-1)^n * (a_n - a_(n+1)) = \sum_{n=2}^ ∞ (-1)^n * a_n - \sum_{n=2}^ ∞ (-1)^n * a_(n+1) $ e dire che quella di $a_n$ converge ad S ma anche quella di $a_(n+1)$ mi è venuto in mente. Grazie mille in anticipo per l'aiuto.
8
10 ago 2021, 09:59

itisscience
ho trovato su internet il seguente esercizio che spero mi possiate aiutare a capire: una funzione $ f(x,y) $ vale $ (sin|xy|)/(x^2+y^2) $ se $ (x,y)≠(0,0) $ e $ 0 $ se $ (x,y)=(0,0) $ si afferma che in $ (0,0) $ la funzione non è continua studiando la continuità alla restrizione $ y=mx $ . ma non capisco come facciamo a dirlo perchè a me risulta che $ lim_(x -> 0) (sin|x(mx)|)/(x^2+(mx)^2)=0 $ che non dipende da m e afferma anche che in (0,0) la funzione non è continua, è ...

lucagf
Buongiorno, Se considero massa e accelerazione di gravità in teoria ho a che fare con due valori costanti sulla terra giusto? Perché se salto su una bilancia, o se mi lascio cadere da 10 cm allora la bilancia sballa inizialmente? Ora consideriamo la forza peso che deve essere costante, dato che m e g lo sono. Però perché se immagino un corpo, in caduta libera, cadere da varie altezze, ho la convinzione che più cada da in alto e più la forza sia elevata
1
7 ago 2021, 18:15

Desirio
Sia $~$ la relazione di equivalenza su $R$ tale per cui $x ~ y$ se e solo se $x - y \in Q$. Descrivere gli aperti dello spazio quoziente $R / ~$. $R$ ha la topologia euclidea standard. Non saprei come procedere.. Ovvero, $x,y$ sono in relazione se $x = y + m/n$ con $m,n \in Z$. Quindi pensavo che tutti i numeri razionali fossero equivalenti... E rimanevano fuori tutti gli irrazionali. Quindi la relazione ...
1
9 ago 2021, 18:33

Daffeen
Ciao a tutti, ho il seguente dubbio, vi ringrazio in anticipo: Immaginiamo di avere un albero di ricorrenza in cui ogni nodo interno ha cardinalità 1 (quindi può essere visto come una lista). Ogni nodo ha complessità \(\displaystyle \Theta(n) \) riceve in ingresso la dimensione che riceve in ingresso il padre - 1. La radice riceve in ingresso \(\displaystyle n \). Quindi sostanzialmente possiamo vedere il tutto come una lista \(\displaystyle n \ ; \ n-1 \ ; \ n-2 \ ; \ ... \ ; \ 1 \) dove ...
1
7 ago 2021, 09:22

Gianluk3
Salve a tutti, stavo facendo questo esercizio e mi è sorto un dubbio . L'esercizio è: $\sum_{k=1}^ ∞ ln(n)/n^(3/2)$. Io so che per la gerarchia degli infiniti, la potenza va all'infinito più velocemente del logaritmo (quindi la serie converge), pertanto la mia domanda è: perchè non posso maggiorare $ln(n)$ con $n$? Perchè ho provato a farlo e mi verrebbe la serie divergente e guardando le soluzioni dell'esercizio, viene utilizzata $n^(1/3)$. C'è un metodo per capire a quale ...
2
9 ago 2021, 17:43

itisscience
$ f(x,y): R^2->R $ è uguale a $ (x^3+y^4)/(x^2+y^2) $ quando $ (x,y)≠(0,0) $ e a $ 0 $ quando $ (x,y)=(0,0) $ . voglio studiarne la differenziabilità nell'origine quindi imposto il limite: $ lim_((x,y) -> (0,0)) (f(x,y)-f(0,0)- <∇f(0,0),(x,y)>)/(√(x^2+y^2))=(y^4-xy^2)/(x^2+y^2)^(3/2) $ e questo coincide con quello che scrive il prof. ora lui procede dicendo che se ci avviciniamo all'origine lungo la retta y=x troviamo che $ lim_((x,y) -> (0,0)) (f(t,t)-f(0,0)- <∇f(0,0),(t,t)>)/(√(t^2+t^2))=(t^4-t^3)/(2t^2)^(3/2) $ . vi chiedo per favore di spiegarmi il passaggio che segue: $ (t^4-t^3)/(2t^2)^(3/2)=2^(-3/2)((√|t|)+t/(|t|)) $

fluspiral
Salve a tutti, qualcuno sa spiegarmi perchè una forma differenziale chiusa in un dominio semplicemente connesso è anche esatta (e quindi esiste almeno una funzione chiamata potenziale, primitiva della forma differenziale), mentre in un dominio connesso (non semplicemente) non lo si può dire a priori ma si deve verificare? Dal punto di vista fisico, perchè nel primo caso si può concludere che il campo vettoriale (associato alla forma differenziale) è conservativo, mentre nel secondo no? Cosa ...

Gianluk3
Salve a tutti. Mi sono imbattuto da qualche ora in questo esercizio e dopo averlo provato più volte a fare, controllando anche l'eventuale convergenza con wolfram non riesco a capire come faccia a dire che questa serie diverga. $\sum_{k=1}^∞(1-1/k^2)^(k^2)$ Per provare a risolverlo, vedendo che c'è un $k^2$ all'esponente, mi è venuto in mente di applicare il criterio radice e successivamente ottenere una stima asintotica utilizzando $e^log()$ e successivamente applicare il criterio del ...
2
9 ago 2021, 14:07

itisscience
devo studiare la serie $ sum_(n =0 ) ^(+oo)(n!)/(n^n)a^n $ al variare di $ a $ reale. ne ho studiato l'assoluta convergenza col criterio del rapporto e ho trovato che converge assolutamente per $ |a|<e $ , quindi non si avrà convergenza per $ |a|>e $ . ho però difficoltà a trattare i casi $ |a|=e $ : per $ a=e $ il criterio del rapporto è inconcludente perchè il risultato del limite è 1, e col criterio della radice ottengo $ lim_(n ->+oo ) (n!)^(1/n)e/n=lim_(n ->+oo )e/n=0 $ quindi ...