Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

La mia soluzione è la seguente:
La conclusione e quindi che la resistenza del bipolo ai morsetti è $R= 1.32 o h m$
A me pare un esercizio molto basilare, ma non vorrei che stia trascurando qualcosa e quindi chiedo a voi se secondo voi ho fatto bene

Ciao a tutti ragazzi,
Devo risolvere ila seguente problema: calcolare i massimi e minimi di $f(x,y)=3x^2-2xy+2y^2-x$ nel dominio definito dal triangolo piano di vertici (0,0); (1,0); (0;1)
Il problema è semplice pero' a un certo punto arrivo a una contraddizione alquanto strana.
Prima di tutto calcolo i punti critici di $f(x,y)$ e col solito metodo delle derivate parziali e della Hessiana, arrivo alla conclusione che il punto $P(\frac{1}{5},frac{1}{10})$ è un minimo.
Dopo di che vediamo cosa ...

Ciao a tutti! Sto preparando un esame di statistica di base per un corso di sociologia e mi sono imbattuto in questo esercizio che mi sta tormentando. Ad occhio mi è sembrato troppo facile ma quando ho provato a farlo non sapevo da che parte sbattere la testa . Questo è il testo
I voti espressi nella scala 20-40 nell’Ateneo X devono essere convertiti nella scala
100-140 nell’Ateneo Y. Uno studente che nell’ateneo X aveva media 35, quale media si ritrova
nell’ateneo Y [NB: mostrare ...

Del seguente problema di PL e nota B^-1 all'ottimo mentre la base ottima e costituita da x2,x1,x3.
Esplicitare completamente il tableau ottimo
Quale risorsa conviene prioritariamente variare? Calcolate il suo range di variabilità che mantiene stabile la soluzione ottima
Qual e il range di stabilità dei costi della prima variabile in base?
Max z=2x1+4x2+6x3
6x1+2x2《14
4x1+2x3《10
4x2+6x3《6
X1,x2,x3>0
$B^-1$ =
[ $1/4$ $-3/8$ ...

Qualcuno può farmi qualche esempio di biforcazioni di sistemi dinamici (a tempo continuo) ?
Buongiorno a tutti,
se possibile vorrei che qualcuno mi potesse fare qualche esempio pratico di sistema dinamico che presenta delle biforcazioni.
In particolare sarei interessato alle seguenti biforcazioni (basta un solo sistema per ogni biforcazione):
1) transcritica
2)nodo-sella
3)forcone
4)hopf
Quello di cui avrei bisogno non sono le equazioni differenziali che governano il sistema ma è ...

buon pomeriggio a tutti,starei preparando l'esame di analisi II ma ho problemi a capire come si calcola il flusso di un campo vettoriale,vi chiedo se gentilmente potreste fornirmi dei metodi per la risoluzioni di questi.
Calcolare il flusso del campo vettoriale $ F(x,y,z)=(x^2,z^2,y^2z) $ attraverso la superficie di equazione $ z=sqrt(x^2+y^2) $ con $ 1<x^2+y^2<4 $ in modo che la terza componente della normale sia negativa.
Ho calcolato le derivate parziali della superficie rispetto ad x ed y ( ...

E' possibile capire a colpo d'occhio se una serie converge?
Vi allego l'esercizio che dovrei risolvere in un quiz ma ho pochi minuti di tempo...
Come posso fare??
Con il criterio del rapporto ci impiego troppo tempo!
Grazie
Mentre studiavo una dimostrazione sono rimasto bloccato ad un passo dalla fine, non riesco a capire il seguente passaggio:
$\lim_(x\to +\infty)(x^alpha/a^x)= (alpha/(\log_(4)(a)))^alpha$
Per maggior comprensione posto anche i passaggi precedenti:
$x^alpha/a^x= x^alpha/(4^(x\log_()4(a)))= (x/4^(x\log_(4)(a)/alpha))^alpha$
Si effettua la sostituzione:
$y = (x \log_(4)(a))/alpha rarr +\infty$ per $xrarr +\infty$
E poi si passa al passaggio che non mi è chiaro.
Grazie!!

Salve a tutti, scrivo per chiedere il vostro aiuto sulla risoluzione di questo esercizio, mi vengono chieste le seguenti cose:
1) calcolare l'integrale dopo aver verificato che esiste
$ \int _2^{+\infty }\frac{1}{x^3+x^2}\ $
il problema non sta nel calcolarlo,ma in che modo si verifica l'esistenza prima di calcolarlo ?
grazie in anticipo

salve a tutti, sto preparando l'esame di analisi 2 e sono incappato in un'esercizio di massimi e minimi in 2 variabili che mi sta facendo perdere la testa . Vi chiedo se mi potete dare una mano a risolverlo, il testo è questo: $ f(x,y) = |9-y^2| +1/2(y+log(2)x)^2 $ dove il logaritmo è in base due ma non sapevo come scriverlo, in ogni caso per lo studio prima ho spezzato in due sottofunzioni la $ f(x,y) $ indicando quando il valore assoluto è maggiore di zero e quando minore di zero: $ f(x,y)={ ( 9-y^2 +1/2(y^2 +2ylnx/ln2 + (lnx/ln2)^2 ),( y^2 - 9 +1/2(y^2 +2ylnx/ln2 + (lnx/ln2)^2):} $ . ...
Un corpo di massa M=20kg affronta una salita di angolo 25° con energia iniziale di 150J e coefficiente di attrito dinamico 0,25
di quanto sale lungo il piano inclinato?
Essendo che il lavoro dell'attrito è una forza non conservativa io ho calcolato che
LAVORO ATTRITO + ENERGIA POTENZIALE INIZIALE = ENERGIA CINETICA INIZIALE
Ora il lavoro dell'attrito é
$mgcosalpha(s)$ dove s è lo spostamento.. a cui va sommato $mgh$ .. ora $h$ devo indicarlo come ...

Potreste aiutarmi con questo esercizio?
http://imgur.com/CvBEjQb

Sto facendo uno studio di funzione, ho scoperto che la funzione non ha alcun punto di massimo o di minimo ponendo f'x >= 0 che non ha soluzioni, posso quindi concludere che la mia funzione non avendo massimo o minimo non ha punti di flesso ed è quindi inutile calcolare la derivata seconda e studiare f''x >= 0 ?

Salve! Non riesco a trovare, in merito ad un esercizio di diagonalizzazione, l'autospazio relativo all'autovalore $sqrt(2)$;
per farla breve, facendo $Ker(A - sqrt(2)*I)$ ottengo la matrice:
$ | ( -1-sqrt(2) , -1 , 0 ),( -1 , 1-sqrt(2) , 0 ),( 0 , 0 , 1-sqrt(2) ) | $
dove $A = | ( -1 , -1 , 0 ),( -1 , 1 , 0 ),( 0 , 0 , 1 ) | $
Essendo $sqrt(2)$ un autovalore di molteplicità 1, dovrei avere che la dimensione del ker vale 1, ma in realtà portando la matrice in forma triangolare superiore ottengo:
$ | ( 1 , 1/(1+sqrt(2)) , 0 ),( 0 , 1-sqrt(2) , 0 ),( 0 , 0 , 1-sqrt(2) ) | $
che dà ker nullo
Avendo verificato con Wolfram che ...

Buongiorno, svolgendo la classificazione della quadrica f(x,y)= $frac{x^2-y^2+6}{6y}-x-1 $ mi confermate che si procede così?:
Pongo f(x,y)=z, calcolo il determinante della matrice M 4x4 associata alla quadrica e il complemento algebrico dell'elemento di posto 4,4. Dai calcoli ho trovato det (M)=-54 e A44=-9. Ora, per stabilire se si tratta di ellissoide o iperboloide ellittico devo calcolare gli autovalori della matrice 3x3 A44, ma arrivo a trovare un polinomio di terzo grado di cui non riesco a ...
Ciao, facendo esercizi di Analisi 2 ho trovato questo che non riesco a risolvere
L'esercizio mi chiede di studiare l'equazione differenziale:
$ y'=(y-3x)/(2x+y) $
Io ho provato a dividere numeratore e denominatore per $ x $
$ y'=(y/x-3)/(2+y/x) $
E porre $ z=y/x $
quindi $ y'=z'x $
L'equazione diventa
$ z'=(z-3)/(x(z+2)) $
sommando a numeratore $ +-5 $ ottengo
$ z'=1-(5)/(x(z+2)) $
Poi però non so continuare e in realtà non sono nemmeno sicuro che sia questo il metodo in ...

Ciao!
Vi espongo questo problema: "su \( (R,\varepsilon _1) \) si consideri la relazione di equivalenza $ x~ y\Leftrightarrow x-y\in \mathbb{Q} $ . Si dica se \( \mathbb{R} / \sim \) è Hausdorff.
Ho la soluzione ma davvero non riesco a capire come questo possa dimostrare che due elementi non equivalenti hanno aperti saturi disgiunti...
Dice così: non è Hausdorff. Siano $ A_0$ e $ A_1$ aperti in \( (R,\varepsilon _1) \) saturi e sia $ x_0 \in A_0$ e $ x_1 \in A_1$. Se ...

Testo:
Un'automobile, assimilabile a un corpo puntiforme, si muove di moto rettilineo con velocità costante di modulo $v_0 = 20 m/s$ in salita lungo una strada inclinata di $α = 16.5°$ rispetto al piano orizzontale.
Il corpo si muove sotto l'azione delle seguenti forze:
1) forza di un motore che eroga una potenza costante di $25 kW$;
2) sua forza peso e corrispondente reazione vincolare del piano inclinato;
3) forza d'attrito cinematico radente, caratterizzata da un ...
Salve a tutti, sto preparando l'esame di Analisi II ma ho qualche dubbio su un esercizio:
Consideriamo l’integrale: $ int_(Omega )^() xsqrt(x^2+y^2) dx dy $
con $ Omega = {(x,y) in \mathfrak(mathbb(R^2) ) : x^2+y^2<1, x^2+y^2<2y, x<0} $
Per risolverlo sono passato alle coordiate polari $ { ( x=rho cosvartheta <br />
),( y=rhosinvartheta ):} $
Dunque $ (x,y)in Omega harr { ( 0<rho<1 ),( 0<rho<2sinvartheta ),( pi /2<vartheta <pi ):} $
Ora il libro scrive $ Omega $ come somma di $ Omega'+Omega'' $
$ Omega ' = {(rho, vartheta ) inmathbb(R^2:0<rho<1 , pi /2<vartheta <5/6pi ) } $
$ Omega '' = {(rho, vartheta ) inmathbb(R^2:0<rho<2sinvartheta , 5/6pi<vartheta < pi ) } $
in modo poi da sommare i due integrali estesi a $ Omega '$ e ...

Salve a tutti, ho un problema ha impostare questo esercizio. Qualcuno potrebbe aiutarmi per favore?
Calcolare il lavoro del campo vettoriale:
$F(x.y,z)=(x+y,y,z)$
lungo il bordo dA della superficie A definita dalla parametrizzazione:
$ X={ ( x=u ),( y=v ),( z=1+u^2v^2 ):} $ con $ u^2+v^2<16 $