Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
allora, vi espongo il mio problema..
questo e' l'esercizio:
Dati la supercie
$C := f(x; y; z)$ in $R^3 : x^2 + y^2 = 1; |z|<= 1$
(orientata a piacere) e il campo di vettori
$F(x; y; z) := (e^(-z^2), e^(-z^2), 0)$
calcolare
$int_CF(x,y,z)*ds$
allora, la superficie in questione non e' chiusa, quindi in teoria non si puo' invocare a gran voce il teorema di Gauss, tuttavia, essendo la componente del campo F lungo z nulla, il flusso anche se ci fosse il "coperchio" del cilindro, sarebbe nullo, percio' posso permettermi ...
mi potreste aiutare a risolvere quest'identita???
cos2a-cos4a=sen6a-sen2a/cos2a+cos4a
(x^2+1) / (2) - [(x+1)(x-1)] / (4) = [(x+3)^2 + (x-3)^2] / (2) -9
ciao potete dirmi xk il risultato di questa equazione fratta che diventa pura è +-1 e non [math]\sqrt{+-1}[/math]?
volevo sapere se magari era la stessa cosa? o se avevo sbagliato qualcosa..anche se nn credo..il risultato +-1 è quello dato dal libro..
ciao a tutti.
non riesco a risolvere questo problema. mi aiutate???
determina il punto della parabola 4y+x^2=10x-5 per il quale è massima la somma delle sue coordinate.
Quando la matrice A è diagonalizzabile (a c R)?
( a ; 3 ; 0 )
A:( a^2 ; 3a ; 0 )
( 1-2a ; -1 ; a-1)
Corregetemi se dico assurdità:
Dato che:
$\pi_1 (S^1)~=\pi_1(C)~=\pi_1(M))=(Z,+)$
e che
$S^1~= RR/ZZ$
$M~=RR^2/ZZ$
$C~=RR^2/ZZ$
Il gruppo fondamentale è il quoziente in sostanza?
ciao eccomi di nuovo qua sperando che ho fatto bene cio che scrivo:
un aereo lascia cadere dalla quota di 3500 metri una sfera sonda. calcola il tempo che essa impiega per raggiungere il suolo (non si considera l'effetto aria).
io l'ho svolto in questo modo vorrei una vostra considerazione se ho capito bene.
3500x 4(2 al quadrato)= 14000/2=7000s
la formula che ho considerato è la seguente:
S=VT
grazie annarita
devo risolvere questo: - 2·x = √x
io ho provato a elevare entrambi al quadrato: 4x^2=x
viene quindi x1=0 e x2=1.
ma derive mi dice che - 2·x = √x ha una sola soluzione,cioè x=0???
quali sono le regole generali in questi casi?
e se fosse stato un disequazione?tipo - 2·x √x
salve ragazzi ho la necessità di riuscire a risolvere il seguente esercizio:
Utilizzando la definizione di limite provare che risulta
$lim_(x->1)(3x+1)/(x+5)=1$
adesso ho capito che devo porre tuttoin valore assoluto minore di $\epsilon$
e quindi
$|(3x+1)/(x+5)-1|<\epsilon$
ma poi mi blocco che devo fare?
Help!!!!
risolvere l'equazione
$z^2-2iz-((3+i*sqrt(3))/2)$
scrivere le soluzioni in forma algebrica, trigonometrica, ed esponenziale. Rappresentare le soluzioni nel piano cartesiano.
Qualcuno potrebbe dirmi come se questa equazione è possibile risolverla come una semplice equazione di secondo grado
Però poi come uso i risultati???
ciao a tutti domni dovrei fare un esame di matematica applicata e ho alcuni problemi con dell trasformate di la place potete iutami perfavore a capire qalcosa e a risolverle?
grazie....questa è la prima
y''(t)+integta 0 e t di y(tao) d(tao)=H(t)*e alla -t + H(t-1)*e alla -(t-1)
y(0)=y'(0)=0
allora ho capito che :
la trasform di y''(t) è s quadro
poi c è l intgrle la cui trasform è 1/s y(s)
forse dovrei applicare un prodotto di cnvoluzion ma con quali estrmi di ...
Ciao a tutti non riesco a capire come risolvare questa equazione :
( dε / dt ) = A exp ( -Q / RT )
Sarebbe l'equazione di Arrhenius se non sbaglio, dove ε dovrebbe essere la costante di velocità, e Q l'energia di attivazione.
Mi blocco al primo passaggio e non so cosa fare.........
dε = [ A exp ( -Q/RT ) ] dt
Cerco qualcuno che possa scrivere passo passo come afforntarla, perchè da questa dovrei ricavare il valore di Q.
Grazie a tutti !
ciao,
sto studiando il calcolo proposizionale e mi sono imbattuto nelle seguenti pagine:
- http://en.wikipedia.org/wiki/Disjunction_elimination: secondo questa fonte l'eliminazione della disgiunzione logica consiste in questo ragionamento: $a\vee b,a\rightarrowc,b\rightarrow c\implies c$
- http://en.wikipedia.org/wiki/Talk:Disju ... limination: secondo questa fonte l'eliminazione della disgiunzione logica consiste in quest'altro ragionamento più semplice: $a\vee b, \not a\implies b$
entrambi i ragionamenti sono corretti, ma qual è quello giusto?
grazie.
1) Dimostrare che, congiungendo un punto di un lato di un triangolo con i punti medi degli altri due, si forma un quadrilatero equivalente a metà triangolo
2) Dimostrare che, se per un punto di una diagonale di un parallelogrammo si conducono le parallele ai lati, il paralelogrammo rimane scomposto in altri quattro parallelogrammi, dei quali i due non attraversati da quella diagonale sono equivalenti.
Non riesco proprio a farli, grazie mille!
durante lo svolgimento di un esercizio mi sono trovato davanti a questa espressione: $e^x-sum_(k=0)^(n-1)(x^k/(k!))$. Avrei bisogno di manipolarla un pò, quella somma dovrebbe essere il polinomio di taylor di $è^x$ di ordine $n-1$ giusto? quindi posso considerare quella espressione come il resto $n-1$ - esimo dello sviluppo di $e^x$? con il resto di lagrange si avrebbe $\alpha_(n-1) = e^(\epsilon)*x^n/(n!) = e^x-sum_(k=0)^(n-1)(x^k/(k!))$
1) Nella definizione di sottosuccessione, o succ. estratta, la successione crescente di numeri naturali $n_h$ è a valori in $NN$, vero?
2) L'integrale di Riemann, pensando alla disuguaglianza valida per ogni decomposizione di $[a,b]$ $s_D<=int_ a^b f(x)dx<=S_d$, è un un numero compreso nell'intervallo di separazione [ sup $s_D$, inf $S_D ]$?
3) Sia $f(x)=x^(1/2) : [0, +infty[ -> [0, +oo[, g(x)=log(x) : ]0, oo[$ e l'immagine di f è contenuta nel dominio di g, basta escludere al più il punto ...
Lo so, lo so ogni volta vi chiedo qualcosa! Ma sto diventando scema ç_______ç
Dato il fascio di rette di equazione:
(k+1)x+y+2+2k=0
detto C il centro del fascio ed a la retta del fascio parallela alla bisettrice 1° e 3° quadrante, determinare le equazioni delle rette perpendicolari ad a che formano con a e con l'asse x un triangolo avente un vertice in C di area 9/4.
Deve venire x+y+5=0 ; x+y-1=0
Allora u.ù il centro mi viene (-2;0) e la retta a mi viene y=x+2 e fin qua tutto ok, poi ...
Il testo del problema è il seguente:
Una striscia di metallo larga $h$ è percorsa da una corrente $I$. Qual'è il campo magnetico $B(x)$ ad una distanza $x$ a destra dal bordo del metallo ?
Ecco come ho impostato il problema:
Il campo magnetico generato da un filo è
$B = (mu_0 i) / (2 pi r)$
dove r è la distanza dal filo.
Ora prendo una piccola striscia di metallo che genererà un piccolo campo magnetico così definito:
$dB = (mu_0 I/h) / (2 pi r)<br />
ora integro<br />
$int ...
Buongiorno a tutti.
Ieri ho fatto l'esame e domani vado all'orale.
Purtroppo però non avendo più Derive non posso sapere cosa ho sbagliato.
Mi sarebbe molto utile sapere cosa ho sbagliato, così non casco proprio dalle nuvole all'orale.
Potete perfavore, controllarmi un attimo voi i risultati con Derive?
$lim_(x->2)(x-|x-x^2|)/(1-cos(x-2)$
$\int_sqrt(2)^1(2(2-4t^2+3t^2)/(t^2-2t^3))dt$
grafico di $f(x)=ln (|x|-1)$
Grazie per l'attenzione,
buonagiornata
Mi fate un esempio di un retratto di deformazione che è un retratto e un retratto che non è un retratto di deformazione