Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Salve a tutti sono un grande appassionato del gioco del lotto, e pur ritendendomi molto esperto in materia non sono in grado di elaborare gli script necessari per certi tipi di ricerche che vorrei fare.
Faccio un esempio:
vorrei calcolare l' ambo che in 5 ruote presenta la somma dei ritardi di ciascuna singola più alta( non quello che presenta il ritardo più alto quello è un dato facilmente reperibile), lo stesso se volessi calcolarlo per una terzina o quartina per ambo.....
Qualcuno mi ...

Salve, sono nuovo del forum e avrei un problema con il seguente esercizio.
Si considerino in $ RR^(3) $ i vettori $ v1 = (1,1,1) $ , $ v2 = (1,1,0) $, $ v3 = (1,0,0) $, $ v4 = (1,0,1) $.
Si dica se per qualche valore del parametro $ t in RR $ esiste un endomorfismo $ f $ di $ RR^(3) $ che verifica le seguenti condizioni:
$ f(v1) = (1,4,-2) $
$ f(v2) = (2,4,-4) $
$ f(v3) = (2,0,-4) $
$ f(v4) = (t,t-1,-2) $
e se in corrispondenza a ciascuno di ...
[math]\sum_{i=1}^\infty \frac{x^n+\sqrt{n}}{n^2+x^{2n}}[/math]
Aggiunto 2 minuti più tardi:
Tentata risoluzione. Per vedere i valori in cui la serie converge, l'ho maggiorata con la serie seguente (tralascio per brevità gli estremi di somma)
[math] \sum\frac{x^n+\sqrt{n}}{x^{2n}}=\sum \underbrace{\left(\frac{1}{x}\right)^n}_\alpha+\underbrace{\frac{\sqrt{n}}{x^{2n}}}_\beta[/math]
Aggiunto 4 minuti più tardi:
Ora, si ha che [math]\alpha[/math] è una serie geometrica di ragione 1/x, e converge se [math]-1

Alla fine del primo quadrimeste, in una classe risulta che:
25 alunni hanno la sufficienza in italiano
20 alunni hanno la suficienza in matematica
18 alunni hanno la sufficienza in inglese
20 alunni hanno la sufficienza sia in italiano che in metematica
13 alunni hanno la sufficienza sia in italiano che in inglese
11 alunni hanno la sufficenza sia in matematica che in inglese
Quanti sono gli alunni in classe?
mi aiutate è urgente grazie.

considera le seguenti coppie di insiemi
A={x\x è un numero dispari minore di 30}; B={x\x è un numero dipari minore di50

Salve,
Giocando con il metodo dello scattering inverso per risolvere le PDE (http://books.google.it/books?id=Gtv0vY3 ... &q&f=false) ho trovato una soluzione per l'equazione del calore [tex]u_t=Du_{xx}[/tex] con $D>0$ costante.
Se non ho sbagliato i conti, ho trovato che questa equazione ammette soluzioni di tipo solitonico (cioè ha solitoni come soluzioni) (http://www.math.h.kyoto-u.ac.jp/~takasa ... dex-e.html o http://en.wikipedia.org/wiki/Soliton ).
Volevo chiedere se qualcuno conosce qualche situazione empirica in cui il calore si propaga in questo modo, o sa ...

Salve ragazzi: oggi mi sono imbattuto nella definizione di differenza di potenziale elettrostatico come : $-\int_{a}^{b} E ds$
Il mio problema ,tralasciando la parte analitica, è capire cosa effettivamente fosse il potenziale elettrostatico e conseguentemente la sua differenza,tralasciando formule ecc.. vorrei capire di cosa praticamente stiamo parlando in maniera anche grafica se è possibile !! come sempre grazie in anticipo:)
salve avendo:
$2cosx+2cos(2x)>0$
1) $2cosx+2*(2cos^2x-1)>0$
$2cosx+4cos^2x-2>0$ arrivati a questo punto come mi consigliate di procedere... si potrebbe fare la sostituzione $ 2cosx=t$ ?
in modo che diventi $ 2t^2+t-2>0$
o ci potrebbe essere una via più semplice?
grazie mille

$ {( 0.bar (6 ))^ 4 * [(-2/3)^ -2 -: (-4/81) ^ -4 ] ^ -3 } -: ( 12 ^ -3 -: 18^-4 ) $
Salve... Ho un problema con l'espressione soprastante, sarei veramente grato se qualcuno, eseguendone lo svolgimento, mi mostrasse i procedimenti eseguiti.
Molteplici grazie anticipatamente.

Ciao ragazzi...Mi servirebbe un auto in mate...
le derivate delle funzioni:
a) y=e^tg(x+45°)
B) y=e^tg(x+π/4)
coincidono? cioè sono le stesse?
Perchè io sono convinto che sia così, ma la mia profe dice che sbaglio poichè bisogna distinguere quando si parla di gradi e radianti!! Grazie a tutti per l aiuto..
scusate..non sono riuscito a scriverlo con l editor di formule
nel caso di il simbolo strano è un pi greco

Salve!
Nella risoluzione di integrali del tipo $int cos^m(x)dx$ e $int sen^m(x) dx$, wolfram alpha mi sputa una formula che personalmente ho trovato interessante. Il problema è che vorrei sapere come si ricavano.
$int cos^m(x)dx = frac{senx * cos^(m-1)x}{m} + frac{m-1}{m}*int cos^(m-2)x dx$
$int sen^m(x)dx = - frac{cosx * sen^(m-1)x}{m} + frac{m-1}{m}*int sen^(m-2)x dx$
Chi può aiutarmi? Grazie
Ho un problema nel trovare la soluzione (es. il dominio ecc) in una funzione..
Es.
$ y = sqrt[(x - 2) / (x^2 - 8x + 15)] $
Sotto radice c'è tutto, sia numeratore che denominatore..
1- visto che è indice pari, ho capito che bisogna porre il radicando sempre maggiore o uguale a zero, perché giustamente non esiste in R un numero negativo che può essere sotto radice, quindi:
$ (x - 2) / (x^2 - 8x + 15) \geq 0 $ (ma questo non è il campo di esistenza o dominio, giusto?)
- N = $x - 2 \geq 0$ ------> ...

Ciao a tutti, rieccomi
L'esercizio stavolta è il seguente. $R$ anello, e $M$ è un R-modulo.:
Prima parte:
Preso x in M, verificare che $ AN(x)={r in R: rx=0} $ è un ideale di $R$ e che $Rx={rx, r in R}$ è un R-sottomodulo di M. Inoltre: $ R // AN(x) $ e $Rx$ sono isomorfi come R-moduli.
E questo è semplice.
La seconda parte chiede di far vedere che $M$ è ciclico (come R modulo, ovvero c'è un x tale che $M=Rx$) ...
Tre cariche puntiformi positive uguali a 4×10^−8C si trovano nei vertici di un triangolo
equilatero di lato 17 M. Determinare l'intensita' del campo elettrico nel punto medio di un
lato.
SOLUZIONE:1,6 N/C

ciao,
ho qualche difficoltà nel risolvere questa eq differenziale del primo ordine:
y'=y^2 * sin (y)
ho pensato che fosse una eq a variabili separabili, così separando le variabili avrei:
dy/y^2*sen(y) = dx
integrando verrebbe da risolvere un integrale 'mostruoso' cioè quello del primo membro che non so risolvere..la mia idea è giusta? se si come si risolve quell'integrale?
grazie per l'aiuto.

Come da titolo avrei bisogno di una mano nel dimostrare tutti i vari passaggi di un esercizio che riguarda i test di verifica delle ipotesi.
Il problema non ce l'ho nell'esercizio ma proprio nel motivare, dimostrandoli, TUTTI i passaggi (es. perchè scriviamo "si rifiuta...", ecc.).
L'esercizio mi chiede:
1) costruire un test
2) specificare quale decisione suggerisce
3) calcolare il p-valore
Per completezza, così almeno guardiamo la stessa cosa, vi linko una scansione ...

Perchè $\hat L^1(\mu,F)$, che è come indico le funzioni in $F$ che hanno misura di lebesgue finita non è uno spazio di Banch si $F$
mentre $L^1(\mu,F)$ che definisco come $\hat L^1(\mi,F)$ quozientato per l'insieme delle funzioni $f=0 q.o.$ lo è?
(dove $F$ è $RR$ o $CC$ e $\hat L$ sarebbe un "L" corsivo come credo si usi...)
Ho capito che in $\hat L^1$ la funzione $p(f)=int_(T) |f| d\mu $ è una ...

scrivi sotto forma di numero decimale le seguenti frazioni:
4/10
7/100
540/1000
24/10
48/10
457/1000
8/10
grazie mille 10 punti a k mi aiuta .grx mille in anticipo jiijjajaja
8/100
8/1000
Aggiunto 52 secondi più tardi:
skusate 8/100 e 8/1000 vengono pima della frase bacioni

Ciao a tutti. Sto studiando per l'esame orale di analisi due. Stavo studiando la definizione di superficie però non ho capito una cosa. Quando dice che l'applicazione $ gamma:D -> RR $ deve verificare la seguente condizione:"la restrizione di $ gamma:D -> RR $ nei punti interni a D è invertibile" che significa?
Vi ringrazio in anticipo...