Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
93felipe
Ciao a tutti, so che è possibile risolvere disequazioni di secondo grado del tipo $ax^2+bx+c>0$ con 2 metodi: -metodo grafico: in base al segno di a, alla positività, negatività o nullità del $\Delta$, e al segno della disequazione. ALTRIMENTI -riconducendole ad equazioni di primo grado (logicamente se è possibile fattorizzare). ma mi si è posto un problema riguardo la seguente disequazione: $((x^2-3x+2)/(3x-x^2 ))>0$ $C.E. 3-x!=0 => x!=3 \vee x!=0 $ RISOLVENDO CON METODO ...
12
22 ott 2011, 15:02

darkangel65
ciao! potreste aiutarmi? non mi esce questo semplicissimo limite. grazie mille! $\lim\rightarrow{n +\infty} \frac{3n-1}{2n} =3/2$
10
22 ott 2011, 17:53

lollof1
ciao! oggi a lezione di analisi abbiamo fatto degli esercizi a risposta multipla: alcuni di questi erano dei quesiti sulla composizione di funzione... Per uno di questi, per essere risolto, abbiamo fatto il grafichetto della composta: $ f(x)=x-[x]\ e\ g(x)=cos(x) $ non ho capito come ha fatto a fare il grafico di $ (fog)(x)=cos(x)-[cos(x)] $ . qualcuno può spiegarmi COME si fa a ricavarlo? grazie e buona giornata a tutti!
6
20 ott 2011, 17:09

egregio
Credo che questo sia l'ultimo dubbio che mi è rimasto, almeno spero :S Devo determinare la chiusura di $Y=[\sqrt 2 , 3[ \cap Q$ e dire se l'insieme è compatto e connesso. Allora, avevo pensato di ragionare così: la chiusura di un insieme è l'intersezione di tutti i chiusi contenenti Y, sicuramente tra questi c'è R e c'è almeno un altro chiuso che lo contiene, è la chiusura dell'insieme $[\sqrt 2 , 3[$. Tutti i punti di R, e quindi in particolare quelli di X, visto che Q è denso in R, sono di ...
9
20 ott 2011, 16:50

matematicus95
ma le equazioni di secondo grado è vero che sono trinomie perche possono essere scritte nella forma ax^2n +bx^n+c=0? quindi anche le biquadratiche sono un sottoinsieme delle trinomie?????
3
22 ott 2011, 15:04

Aint
salve! ho questo integrale doppio che sembrava facile.. ma passando in polari la situazione si complica a quanto pare invece che semplificarsi! (in più ho un modulo che mi confone) i dati sono $int_E y(1+|x|)^-2$ $dxdy$ $E= $ ${(x,y) in R^2: 1<=x^2+y^2<=4, y>=0}$ e passando in polari l'integrale si complica... poi mi domandavo.. essendo una figura simmetrica.. invece che farlo per polari da $0$ a $pi$ potevo portare un 2 fuori e fare l'integrale da 0 a ...
3
22 ott 2011, 14:58

Kuroda1
Salve a tutti; in questo periodo ho a che fare con econometria e il materiale su cui studio dà per scontato una conoscenza abbastanza profonda di algebra lineare (come è giusto che sia). Sto recuperando da questo punto di vista seguendo vari tutoraggi su youtube, fatto sta che spesso e volentieri non riesco a trovare delle risposte esaustive alle mie domande. La mia domanda riguarda le derivate di funzioni espresse in forma matriciale. Nel particolare stavo proprio ora studiando la derivazione ...
0
22 ott 2011, 16:39

Sk_Anonymous
Salve, supponiamo di avere la seguente equazione: $d/dx A(x)=a(x)$, con $a(x)$ funzione nota. Ora, i libri di fisica ecc.. hanno il brutto vizio di scrivere l'equazione di prima nella forma $((dA)/(dx))=a(x)$, da cui si ottiene $dA=a(x)*dx$. So che se ne è parlato molto. A me però interessa solo sapere qual è il modo rigoroso per arrivare all'ultima espressione che ho scritto. Io ho ragionato cosi: se $d/dx A(x)=a(x)$, allora $A(x)=(int (a(x)*dx))+C$. Quindi, se differenzio la ...

xXStephXx
3 moli di gas alla temperatura iniziale $T_A = 400K$ e pressione iniziale $p_A=2.5 atm$, subiscono un'espansione isoterma \(\displaystyle AB \) in modo da raddoppiare il loro volume. Il gas è quindi compresso isobaricamente sino a tornare al volume di partenza. Calcola pressione, volume e temperatura finale. Allora.. vabbè è semplice solo che ho un dubbio sui risultati.. La pressione finale è $1.25$ atmosfere che è metà di quella iniziale perchè è inversamente ...

Albert Wesker 27
Buongiorno a tutti. Vi propongo il seguente limite: $ lim_(n -> oo) [ sqrt(n^2+1) ]-n $ dove ho indicato con le parentesi quadre la parte intera. E' proprio quest'ultima a darmi fastidio. Normalmente procederei con la "razionalizzazione al contrario" ma la parte intera mi dà fastidio. Consigli?

Kyl1
Salve. Alcuni chiarimenti sulla nozione di derivata per funzioni di cui da titolo: Posto $Y$ spazio normato, $I sub RR$ un intervallo. Ho che $f: I -> Y$ è derivabile in un punto $\xi in I$ se e solo se vale $f(s) = f(\xi) + vec(a)(s-\xi) + \sigma_\xi(s) (s-\xi)$ con $vec(a) = f'(\xi)$ e $\sigma_\xi:I->Y$ t.c. $lim_(s->\xi) \sigma_\xi(s) = 0$. La mia domanda è sulla funzione $\sigma_\xi$: può essere scelta a piacimento purché si annulli al limite per $s->\xi$? Cioè posso scegliere ad esempio che ...
5
22 ott 2011, 11:41

gaten
Ragazzi se considero $R$ come l'insieme dei numeri reali, $T={x in R | -20 <= x <= 20} sube R $ T con operazioni di somma e prodotto, può essere considerato un campo finito

chaty
in un triangolo rettangolo l altezza relativa all ipotenusa misura 43,2cm e un cateto e lungo 72cm . calcola il perimetro e area
2
20 ott 2011, 16:02

egregio
Di una quadrica sappiamo che la parte reale propria è sconnessa e i punti impropri di Q non sono allineati. Si dica Q che quadrica è. Allora, la parte reale e propria di Q è sconnessa , quindi Q può essere : - due piani paralleli; - un cilindro iperbolico , - iperboloide ellittico. Ora, l'informazione che dovrei utilizzare è quella che contiene punti impropri non allineati. Visto che contiene almeno tre punti impropri non allineati, vuol dire che la quadrica è a centro, quindi può essere può ...
3
19 ott 2011, 17:16

menale1
Cari ragazzi vorrei una piccola conferma a riguardo dell'uguaglianza di Parseval , la quale afferma : $ int_()^() (f(t))^2dt $ = $ (a_0)^2 /2 $ + $ sum_(k = 1)^( oo ) (a_k)^2 + (b_k)^2 $ vale se la funzione di partenza è 2-integrabile ? Oppure l'ipotesi deve essere più forte (vs debole ) ? Ringrazio anticipatamente per la collaborazione .
18
20 ott 2011, 20:09

menale1
Cari ragazzi mi vien chiesto di calcolare la rototraslazione ottenuta componendo la rotazione di asse z ed ampiezza $ 30° $ e la traslazione di vettore con componenti $ (0,0,-2) $ . Ho deciso di procedere in questo modo - Costruisco in primi la matrice associata alla rotazione che sarà $ ( ( sqrt(3)/2 , -1/2 , 0 ),( 1/2 , sqrt(3)/2 , 0 ),( 0 , 0 , 1 ) ) $ dunque la rotazione sarà rappresentata dalle seguenti equazioni : $ { ( bar (x) = sqrt(3)/2 x -1/2 y ),( bar (y)= 1/2 x +sqrt(3)/2 y ),( bar (z)=z ):} $ a tal punto considerando la traslazione l'equazione diventerà : ...
2
21 ott 2011, 19:13

xRoach
1) Calcola il modulo del vettore somma e del vettore differenza di due vettori di moduli rispettivamente pari a 2m e 4m e che formano un angolo di 30° [somma=5,82 m differenza = 2,48m Dovrebbe centrare con le funzioni goniometriche e con il seno. Aiutatemi pls :)
1
21 ott 2011, 18:05

alle.fabbri
Ciao gente, sto cercando una maniera per calcolare la standardizzazione dei polinomi di Legendre. Spiego meglio quello che intendo. Dalla formula di Rodriguez sappiamo che assumono una forma proporzionale a $ P_n(x) = (d^n)/(dx^n) [(x^2-1)^n] $ ora io vorrei trovare una maniera generale (intendo con $n$ generico) per calcolare $K_n = \int_{-1}^{1} P_n(x) P_n(x) dx $ La mia idea sarebbe quella di usare l'integrale da in x da $-1$ a $1$ del prodotto di due funzioni ...

Giorgio931
Ciao a tutti,sono nuovo in questo forum,mi chiamo Giorgio e frequento il quinto liceo scientifico PNI.Ho aperto questo topic perchè vorrei comprare un libro di analisi e non so quale scegliere.Voglio comprarlo perchè credo che gli esercizi dei compiti in classe e dell'esame di maturità siano molto più difficili rispetto a quelli che si possono fare col libro scolastico,cerco un libro(o anche una collana)che vada dall'inizio di analisi(studio dei limiti,funzioni) fino ad analisi 2,ed è molto ...
7
14 ott 2011, 20:40

Susannap1
Per il teorema di fermat-wiles la seguente relazione non può esistere $a^n +b^n = c^n$ per $n >2$ . Se ipoteticamente però si potesse avere $a^n +b^n = c^n$ per qualunque valore di $n in NN-{0}$ , in similitudine alle terne pitagoriche $a^2 +b^2 = c^2$ , si potrebbe generalizzare il concetto di terna primitiva e derivata per qualunque valore di $n in NN-{0}$ ,( ovviamente se $a$ e $b$ sono primi fra loro allora la terna è ...
9
20 ott 2011, 14:22