Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Chiedo scusa se sono monotono, ma mi blocco su ste cose. Qualcuno può aiutarmi, consigliandomi magari anche qualche astuzia per essere un attimino più elastico nel risolvere questi sistemi? La funzione di cui si richiede di trovare i punti critici è la seguente:
$f=x^4+y^4+2xy-y^2-x^2$. Il sistema è:
$\{(4x^3-2x+2y=0), (4y^3-2y+2x=0):}$
In ambedue le equazioni si raccoglie 2 e ok; nella prima posso poi raccogliere $x$ ottenendo $x(x^2-1)+y=0$ ove $(x^2-1)=(x+1)(x-1)$ è prodotto notevole. Stessa cosa nella ...

Ho il seguente esercizio con i risultati scritti sul disegno:
Nella traccia, nel primo rigo, viene scritto:
...il sistema riportato in Fig.1, in scala e con quote in mm,...
Ma con quale scala
Se ho le quote in $mm$, quale scala intende?
Non riesco a risolvere il seguente limite:
$ lim_(x -> 0)\frac{(1+senx+sen^2x)^(1/x)-(1+senx)^(1/x)}{x} $
Ho provato più e più volte, ma alla fine mi vengono fuori altre forme indeterminate
Credo che ciò che mi dà più problemi sia quella x al denominatore.
Edit: onde evitare di creare un secondo topic, aggiungo un altro limite qui. Credo di averlo risolto, ma vorrei una conferma sul procedimento (o procedimenti alternativi!):
$ lim_(n -> +oo)(sen\sqrt{n+1}-sen\sqrt{n}) $ che per le formule di prostaferesi è uguale a
$ lim_(n -> +oo)(2cos\frac{\sqrt{n+1}+\sqrt{n}}{2}sen\frac{\sqrt{n+1}-\sqrt{n}}{2}) $ che riscrivo ...
Lo sviluppo comune in questione è questo:
$(1+x)^\alpha=\sum_{i=1}^n ((\alpha),(i))*x^i+o(x^n)$
Non si riesce a generalizzarlo anche nei casi in cui $\alpha$ sia un numero razionale (per esempio $1/2$) anche negativo (per esempio $-1$)?
In altre parole non riesco bene a capire se c'è uno schema ripetuto nei coefficienti dei monomi nello sviluppo seguente, ad esempio:
$sqrt(1+x)=1+1/2 x -1/(2*4)*x^2+(1*3)/(2*4*6)*x^3-(1*3*5)/(2*4*6*8)*x^4+$...
Grazie a quanti potranno rispondermi.

Salve a tutti, ho delle difficoltà nel risolvere il seguente esercizio.
Un sottoinsieme $A$ di un anello $R$, $A\ne\emptyset$ è detto $\text{adeal}$ di $R$ se
$(i)$ $a,b\in A$, allora $a+b\in A$;
$(ii)$ $r\in R$, $a\in A$, allora $ar\in A$ e $ra\in A$.
Provare che
$(a)$ Un adel $A$ di $R$ è un ideale di $R$ se ...

Ciao ragazzi, riscontro qualche difficoltà nel calcolo dell'entropia dell'ambiente in esercizi di questo tipo.
" \(\displaystyle 32.62 * 10^-2 \) moli di un gas perfetto biatomico descrivono il seguente ciclo: dallo stato iniziale A (\(\displaystyle P_A=10^5 Pa \), \(\displaystyle V_A=8 * 10^-3 m^3 \)) si ha una compressione adiabatica reversibile che dimezza il volume, poi da B segue una trasformazione isoterma irreversibile fino allo stato C ...

Ciao a tutti Sono un nuovo membro Ho questa domanda che è un po' calcolo combinatorio e un po' aritmetica modulare quindi farò una domanda qui e una nella sezione di matematica discreta
In quanti modi si può scrivere il numero
2961867515301112627340382741295402150813379531250000000000 = $2^10*3^11*5^16*7^45$
come prodotto di due numeri interi positivi?
Qual è il suo resto nella divisione per 13?
Allora nella prima domanda noto che il numero è un prodotto di (10+11+16+45=82) 82 fattori ...

$lim_(xto+infty)x(sin(1/x)-(1/x))sinx$
in questo limite è possibile non considerare il sinx finale date che il limite non esiste?
se si potesse eliminare io continuerei in questo modo
$lim_(xto+infty)(sin(1/x)/(1/x)-lim_(xto+infty)((1/x)/(1/x))$ =0

Salve a tutti,
posto questo esercizio. E' corretto?
$ { ( y' =(1+cos(t))/y^2 ),( y(0) = 1 ):} $
E' differenziale a variabili separabili
$ y^2y'=1+cos(t) $
con $ y' = dy/dt $
Quindi $ int_()^() y^2 dy = int_()^() 1 + cos(t) dt $
e $ 1/3y^3 = t + sin(t) + c $
Da qui ho qualche dubbio.
$ y(t) = root(3)(3(t+sin(t))) + c $
applicando la condizione ho y(0):
$ 0 + c = 1 $ quindi $ c = 1 $
Con soluzione particolare
$ y(t) = root(3)(3(t+sin(t))) + t $
Where i'm wrong?
Grazie a tutti

Salve a tutti. Sto studiando l'omologia simpliciale ed è stato fatto come esempio l'esercizio sul calcolo dei gruppi di omologia di un triangolo pieno e di un triangolo vuoto; sebbene capisca il senso dei risultati, ho dei problemi a capire il procedimento per arrivarci, spero che parlandone qualcuno riesca a chiarirmi le idee.
Il primo problema che ho trovato è nella definizione delle $l$-catene. Dato un simplesso $K$, definisco il gruppo $C_l(K)$ delle ...

So che è possibile determinare l'equazione della traiettoria di un punto materiale che si sposta in un campo di forze centrali in cui queste sono direttamente proporzionali ad una certa costante positiva che chiamiamo $k$ moltiplicata per la massa della particella ed inversamente proporzionali a quadrato della distanza $r$ (dal punto di attrazione)[in modulo $F = (k*m)/r^2$]. Per semplicità si può supporre che il sistema di riferimento a due dimensioni usato abbia ...

ciao a tutti.
vorrei chiedervi un' opinione su una cosa .
se in un circuito idraulico chiuso ad anello ci sono 2 serbatoi comunicanti tra loro , uno riscaldato e l'altro raffreddato , contenenti un liquido con alto indice di dilatazione termica , si possono creare le condizioni per la circolazione del fluido ?.
ammesso per ipotesi che si riesca a dare un senso di circolazione naturale senza usare pompe , quale velocità e pressione si può ricavare ?
ciao grazie

Salve a tutti, avrei difficoltà con il seguente problema:
Una molla di massa trascurabile e costante elastica $k$ è agganciata al soffitto e in posizione verticale. Considera la posizione dell’estremo libero come riferimento per la posizione verticale $y$ e per l’energia potenziale della forza-peso; un blocco di massa $m$ viene appeso alla molla.
Dimostra che l’energia potenziale totale del blocco in funzione della posizione verticale y può essere ...

Buona sera! Ho un esercizio che mi lascia alcuni dubbi
Sia $tau$ la famiglia di sottoinsiemi di $NN$ data da $O/$, $NN$ e ${1,...n}$ per ogni $n in NN$.
a)stabilire se $(NN,tau)$ è uno spazio topologico compatto e se è uno spazio topologico di Hausdorff;
b) dimostrare che se $(X,tau_X)$ è uno spazio topologico di Hausdorff, allora ogni funzione continua $f:(NN,tau) rarr (X,tau_X)$ è necessariamente costante
a) Per la ...
Ho un problema sul potenziale di una sfera carica.
Si consideri una sfera conduttrice di raggio R su cui è depositata una carica Q:
1) si calcoli il potenziale a cui si trova la sfera.
Per rispondere a questo punto, considero il potenziale $V=0$ all'infinito.
Per quanto riguarda il punto da risolvere ho un dubbio. Innanzitutto, essendo un conduttore, so che la carica si deposita tutta (uniformemente in quanto è isolata) sulla superficie esterna. Per calcolare il potenziale dovrei ...

Ciao ragazzi
Vi posto una foto inviatami dà un mio amico
Allora il dubbio è sul punto c) è il punto d)
Per gli altri punti a), b), e) , f) non ho nessun problema anche perché a lui viene lo stesso risultato.... l'unica cosa in cui non siamo d'accordo sono questi due punti.
A me vengono
Per c) la matrice
$((9,8,-5),(3,2,-1))$
Vi faccio vedere come ne ho fatto uno
$((1),(1),(1))$ = $((1,6,1),(0,1,1))$ = $((9),(3))$
Così per gli altri
Per d) la matrice ...

In questo genere di esercizi non esiste necessariamente un'unica soluzione possibile. Comunque direi che FILM, PROIEZIONI e SALE sono tutte entità e c'è una relazione 1-N tra PROIEZIONI e FILM e un'altra tra PROIEZIONI e SALE.

Ciao a tutti, vorrei esporvi un dubbio.
Nel seguente esercizio
aluminum oxide electrical conductivity
ho calcolato il baricentro e il momento d'inerzia, trovandomi con i risultati. Tuttavia, c'è una cosa che non mi è chiara:
perché i momenti d'inerzia dei due triangolini (quello in alto a sinistra e quello in alto a destra) risultano essere uguali?
Per trovare il momento d'inerzia del triangolino in alto a sinistra ho proceduto così:
$ int_ (0)^(2a) dx int_((1/2)x+2a)^(3a) y^2 dy $
Il momento d'inerzia del triangolino in ...

Sono fermo su questo esercizio da un po' di tempo e nonostante abbia provato divrsi approcci non ci riesco, alcuni ho capito gli errori mentre per altri no, ad esempio per la via del gradiente che vi illustrerò e spero mi indicherete perché sbaglio .
ES:
Due cariche uguali e positive sono poste a distanza 2a l’una dall’altra. Si consideri il piano ortogonale alla loro congiungente e passante per il punto mediano. Qual e il punto a campo elettrostatico nullo su tale piano? Si ...
Buongiorno. Posto il testo di un esercizio con cui ho difficoltà.
Dato l'operatore $A=-d^2/dx^2$ agente sulla varietà lineare, densa in $L_2[a,b]$, delle funzioni $f$ tali che $Af in L_2[0,L]$, con $f(0)=f(L)=0$, mostrare che $A$ è autoaggiunto in tale spazio e determinarne autovalori e autofunzioni.
Allora, ho dimostrato che $A$ è autoaggiunto e ho scritto l'equazione agli autovalori $(lambdaI-A)f=0$ cioè, ponendo ...