Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Sia $\Omega sub RR^n$ un insieme limitato e $C^1$. Allora esiste $c(\Omega)>0$ tale che per ogni $u in W_0^(1,2)(\Omega)$ si ha che $\int_(\Omega)u^2 dx<=c(\Omega)\int_(\Omega)|\nabla u|^2 dx$
Dimostrazione:
Sia $u in C_0^1(\Omega)$, allora $\int_(\Omega) <x,\nabla (u^2)> = \int_(\Omega) <x,2u\nabla u> = 2\int_(\Omega) <x,\nabla u>u$ adesso usando la disuguaglianza di cauchy-schwarz otteniamo $2\int_(\Omega) <x,\nabla u>u<=2\int_(\Omega) |x||\nabla u||u|<=2su p_{x in \Omega}|x|\int_(\Omega) |\nabla u||u|=2c(\Omega)\int_(\Omega) |\nabla u||u|$ dove $c(\Omega)$ è l'elemento che realizza il massimo di $|x|$ in $\Omega$ (che è limitato), per cui $c$ dipende da $\Omega$. Infine applicando ...

Buonasera, chiedo aiuto per questo esercizio di elettrostatica:
Una superficie cilindrica di altezza illimitata, di raggio $R_1$ e con densità di carica superficiale $sigma_1$, è disposta in modo coassiale ad una seconda superficie cilindrica di raggio $R_2 > R_1$ e carica superficialmente con densità $sigma_2$. Quale deve essere il rapporto $sigma_2/sigma_1$ affinché sia nullo il campo per $r < R_1$? E per $r > R_2$? Calcolare il campo ...
Poniamo $S= \oplus_{k=0}^nS_k$ dove $S_k$ sono gli insiemi dei polinomi omogenei di grado $k$, ero curioso di sapere se $S$ avesse un nome, tipo anello graduato dei polinomi omogenei di grado $n$, grazie

Buongiorno, ho questo esercizio che non riesco a risolvere, non so che procedimento usare:
Data la fattorizzazione in prodotto di polinomi irriducibili
\(\displaystyle t^9 -1 = (t+3)(t+5)(t+6)(t^3 +3)(t^3 + 5) \) in \(\displaystyle Z7[t]\)
il numero di codici ciclici di dimensione 5 in \(\displaystyle R9 = Z7[t]/(t^9 -1) \) é ?


Dovrei calcolare l'area di un rettangolo scrivendola con l'errore assoluto.
Dati del problema:
lato a= 100 cm con errore assoluto 1cm
lato b= 50 cm con errore assoluto 1cm.
Svolgimento mio:
Valore attendibile dell'area: 100 x 50 = 5000 cm2
Errore assoluto (0,01 x 0,02 ) x 5000 cm2 = 150 cm2
Dubbi:
1) dovendo scrivere l'errore assoluto dell'area con una sola cifra significativa, scrivo 200 cm2 ?
2) come scrivo il valore attendibile dell'area (ammesso che l'errore assoluto sia 200 cm2) ?

Ciao a tutti. Volevo chiedervi un aiuto su un cambio sdr come in figura.
Purtroppo non ho trovato la sezione geometria più adatta e non vorrei essere finito in quella più universitaria però penso vada bene comunque, in ogni caso provo a esporvi il problema.
voglio passare da x,y ->x'y' e credo di incasinarmi con i segni
Mi spiego:
Se io volessi legare la coordinata x e x' di D in O e O' farei questo ragionamento:
se a è la distanza nel riferimento $O$ tra O e ...


Un saluto a tutti voi. E' il mio promo post...siate generosi
Scherzi a parte: ho un dubbio su una parte di un problema in cui si parla di propagazione degli errori.
Sono noti il volume e massa di un corpo con i rispettivi errori assoluti.
Si vuole calcolare la densità con il rispettivo errore assoluto.
M= 73,6 g con errore assoluto = 0,5g
V= 60 cm3 con errore assoluto = 1cm3
Tralascio i calcoli e vengo al dubbio.
Con i dati dell'esercizio ed applicando la formula si ottiene una ...


Salve, vorrei porvi un problema di analisi 1 al quale non riesco a rispondere, vi lascio di seguito il testo dell'esercizio.
Data: $ F(x) = int_(1)^(x) (e^t)/(t^5 (2-t))^(1/3) dt $ allora F:
1) è limitata superiormente
2) è limitata inferiormente
3) ha una sella
4) nessuna delle precedenti
Procederei calcolando il dominio della funzione integranda il quale è (- $oo$ ,0) U (0,2) U (2, $oo$ ).
Da qui cercherei di capire se nei punti 2 e 0 l'integrale converge o diverge così da trovare il dominio ...
Salve a tutti. Mi sto impelagando sulla lettura di alcuni appunti in cui le implicazioni vengono chiamate come "se" e "solo se". Il problema è che non capisco quale verso dell'implicazione indichino perché, a parer mio, almeno nei due esempi che sto per portarvi, vengono usate in modi differenti.
Gli esempi sono i seguenti:
1) In un anello commutativo unitario $A$, $\forall a \in A$, e per ogni elemento invertibile $u \in A$, $a$ e $au$ sono ...

Buonasera, qualcuno riesce a calcolarmi la derivata rispetto ad a della seguente funzione? grazie mille
(5-2a)exp[-1/4(6a^2-8a+6)
Sia $f :S^2->RR$ la funzione data da $f(x,y,z)=z^2$, calcolare il differenziale di $f$ in ogni punto.
Consideriamo la parametriazzazione $\varphi:(0,pi)xx(0,2pi)->S^2$ con $\varphi(theta,xi)=(sen(theta)cos(xi),sen(theta)sen(xi),cos(theta))$, allora $(del\varphi)/(deltheta)$ e $(del\varphi)/(delxi)$ è una base del piano tangente, per cui basta determinare i valori del differenziale su di essi.
Sia $p=(sen(theta)cos(xi),sen(theta)sen(xi),cos(theta))$, $gamma_1(t)=(sen(theta+t)cos(xi),sen(theta+t)sen(xi),cos(theta+t))$ tale che $gamma_1(0)=p$ e $gamma'_1(0)=(del\varphi)/(deltheta)$, $gamma_2(t)=(sen(theta)cos(xi+t),sen(theta)sen(xi+t),cos(theta))$ tale che $gamma_2(0)=p$ e $gamma'_2(0)=(del\varphi)/(delxi)$, ...

svolgendo degli esercizi mi è sorto questo dubbio: è giusto dire che la variazione di energia interna di un cilindro adiabatico è nulla, invece variazione di energia interna di un cilindro isolato dall'esterno è $\DeltaU=C\DeltaT$? me lo chiedo perchè nel primo caso non mi viene data la capacità termica, nel secondo caso sì
Buon giorno. Ho questo problema: determinare gli iperpiani di $E^4$ ortogonali al sottospazio affine dato da $S_1:\{(x_1+2x_3-1=0),(x_2-3=0),(x_4-2x_3-2=0):}$ aventi distanza $d=2$ dal punto $P=(1,1,1,0)$.
Ho pensato di risolvere così: trovo il vettore direttore di questo sottospazio, ma non saprei come, visto che non ha dimensione famigliare, ottenuto questo vettore trovo quello ortogonale, infine impongo la distanza uguale a 2 usando la formula della distanza di un punto da ...

Ciao ragazzi, l'esercizio in questione(vedi circuito in figura) richiede di calcolare la tensione di Thevenin $E_0$.
I dati sono:
$ E_1=40 V , E_2=130 V , R_2= 40 omega , R_3= 10 omega $
Ho risolto l'esercizio in questo modo:
Poiché entrambi i generatori di tensione sono in serie, cosi come entrambi i resistori, posso calcolare la corrente che attraversa i resistori $R_2$ e $ R_3 $ come : $ I=(E_1 + E_2)/(R_3 + R_2) $.
Poi, nel calcolo di $E_0$ sorge un problema: se applico una LKT all'"intero" ...
Un disco omogeneo di massa $M$ e raggio $r$ può ruotare nel piano verticale x-y attorno ad un asse ortogonale al piano x-y e passante per il suo centro. L'asse del disco può scorrere lungo una guida orizzontale posta lungo l'asse x, come mostrato in figura. Un corpo di massa $m$ in moto con velocità $v_0$ parallela all'asse x e distante $d$ da esso urta il bordo del disco rimanendovi incastrato. Ipotizzando che tutti gli ...

Ciao a tutti, ho un dubbio sulla dimostrazione del seguente teorema: Siano $f:A->B$ e $g:B->C$ e sia $f$ derivabile in $x_0inA$, $g$ derivabile in $y_0=f(x_0)inB$, allora $g(f(x))$ è derivabile in $x_0$ e la sua derivata è $g’(f(x_0))f(x_0)$.
Per dimostrarlo consideriamo il rapporto incrementale $(g(f(x))-g(f(x_0)))/(x-x_0)$ e moltiplichiamo e dividiamo per $f(x)-f(x_0)$ supponendo che $f(x)-f(x_0)$ sia diverso da zero in ...
Un pendolo è composto da un sottile filo inestensibile di lunghezza $L = 30 cm$ e di massa trascurabile, con un carico di rottura $T = 5 N$, e da una piccola sfera di massa $m = 300 g$ sospesa al filo. L'estremità superiore del filo P è fissata ad altezza $h = 3L$ dal suolo. La sferetta viene lasciata da ferma quando il filo è inclinato di un angolo $\theta = \pi/3$ rispetto alla verticale. Determinare:
a) l'angolo $\phi$ (rispetto alla verticale) di cui ...