Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
HowardRoark
Stavo ripassando alcune definizioni sugli insiemi aperti, chiusi, sulla frontiera ecc. e vorrei avere conferma riguardo un modo per determinare se un insieme sia chiuso o meno. Fino ad ora per determinare se un insieme fosse chiuso ragionavo sempre sul complementare: se questo era aperto allora l'insieme di partenza era chiuso. Però credo sia equivalente dire che un insieme è chiuso se e solo se contiene la sua frontiera. Questa definizione credo si possa estendere anche nel caso in cui ...

HowardRoark
Credo che l'enunciato di questo teorema del mio libro sia sbagliato, lo riporto qui per chiedervi conferma: Teorema continuità di una funzione composta: sia $f: RR^2 \toRR$ continua in $(x_0,y_0)$ e sia $g: RR \toRR$ continua in $f(x_0,y_0)$, allora la funzione composta $h = g(f(x,y))$ è una funzione continua in $(x_0,y_0)$. Scusate ma come fa $g$ ad essere continua in $f(x_0,y_0)$ se g va da $RR$ in $RR$? Forse mi sono ...

ncant04
Sto risolvendo il problema di Cauchy seguente: \[ \begin{cases} y''(t) - 4y'(t) + 8y(t) = e^{-2t} \\ y(0) = -1 \\ y'(0) = 0 \end{cases} \] Scrivo il polinomio caratteristico P \left( \lambda \right) dell'equazione differenziale omogenea: \[ P \left( \lambda \right) = \lambda^2 - 4\lambda + 8 \] trovandone due radici complesse: \[ \lambda_1 = 2 + 2i \qquad \lambda_2 = 2 - 2i \] pertanto le soluzioni dell'omogenea associata sono date da: \[ y(t) = c_1 e^{2t} \cos \left( 2t \right) + c_2 e^{2t} ...
9
23 gen 2024, 16:30

soldatoObrian
Ho un dubbio sull'argomento del titolo, provo a spiegarmi. Abbiamo tre definizioni importanti: - La velocità di fase per come è definita è la velocità della singola onda armonica. - la velocità di gruppo il prof ha fatto vedere che esce quando ho un mezzo dispersivo e ho ad esempio già solo due onde sommate tra loro (al continuo $(domega(k))/(dk)$). - un mezzo è dispersivo quando la velocità in tal mezzo dipende dalla lunghezza d'onda o dalla frequenza Il mio dubbio è qui, o meglio due ...

HowardRoark
Sia $f(x,y)= x^2+y^2-1$ e $g(w) = sqrt(w) + ln(w)$. Se io volessi calcolare $g(f(x,y))$ otterrei $g(f(x,y))=sqrt(x^2+y^2-1) + ln(x^2+y^2-1)$. Questo risultato è corretto? Datemi conferma, siccome sono alle prime armi con le funzioni in due variabili. Ma se invece volessi calcolare $f(g(w))$, come dovrei fare? La composizione di funzioni in generale non è commutativa e mi aspetto che la cosa valga anche in $RR^2$, però la differenza qui è che voglio applicare una funzione $g(w)$, così ...

Leira1
Salve, ho bisogno di un parere su un integrale, sicuramente c’è qualcosa che mi sfugge e sono qui per chiedervi cortesemente una mano $ int_(0)^(1) y*(-lny) dy=<br /> -(lny)*(y^2/2)- int_(0) ^ (1) - (1/y)*(y^2/2) dy = -((y^2*lny)/2)+1/2* int_(0)^(1) y dy= -((y^2*lny)/2)+1/4 $ Questa è la mia soluzione, integrando per parti, sul foglio di esercizi la soluzione è semplicemente 1/4 Sicuramente è qualcosa che non ricordo per via del tempo, ringrazio anticipatamente chi vorrà darmi una mano
5
24 gen 2024, 17:01

Drag0nstar00
Buonasera Come ho scritto in altro post io sono uno studente universitario (fuori corso). Per fare esperienza ho iniziato a fare il supplente in una scuola e in un meme a caso un mio studente così dal nulla mi ha mostrato questo integrale: \begin{equation} N_{\lambda}(a,b)=\frac{1}{2\pi i} \int_{-\infty}^{\infty} 1- dt\,log\Biggl( 1-\frac{\lambda\,log\Bigl(\frac{1}{2}-it\Bigr)}{b+\frac{1}{2}-it} \frac{d}{dt} ...
5
12 nov 2023, 18:00

CosenTheta
Mentre scrivevo lo sviluppo in serie di Taylor di $exp(-n)$ mi è sorto un dubbio. Ricordando che $exp(x) = 1 + x + x^2/2 + o(x^2)$ vale $\forall x$ reale, allora ponendo $x := -n$ ottengo $exp(-n) = 1 - n + n^2/2 + o(n^2)$. Il limite all'infinito di $exp(-n)$ è chiaramente $0$, ma se svolgo il limite dello sviluppo, ovvero $\lim_{n->\infty} 1 - n + n^2/2 + o(n^2)$ per la gerarchia degli infiniti il termine al quadrato è dominante e quindi il limite è $+\infty$. In generale, aggiungendo ...
14
16 gen 2024, 15:09

RenzoDF
Come spesso succede, spariscono i thread. Ad ogni modo, per il primo problema della forza sulla spira, direi che è sufficiente considerare il generico tratto infinitesimo di spira di lunghezza $dl=a\ d\theta$, alla generica distanza $x=a\ \cos \theta$ dall'origine, determinare la forza radiale $dF=BI dl$ e integrale, duplicando la sua componente lungo x, per $0<\theta<\pi$. Il secondo problema, purtroppo, non sono nemmeno riuscito a leggerlo.

oleg.fresi
Buon giorno. Ho questo dubbio: per tre punti non allineati passa uno e un solo piano che si può ricavare con questo determinante: $|(x-x_1, y-y_1, z-z_1),(x_2-x_1, y_2-y_1, z_2-z_1),(x_3-x_1, y_3-y1, z_3-z_1)|=0$ e fin qui ci sono. Il libro che uso dice che questo determinante è equivalente a questo: $|(x, y, z, 1),(x_1, y_1, z_1, 1),(x_2,y_2,z_2,1),(x_3,y_3,z_3,1)| = 0$. Io aldilà di svilupparli ed effettivamente vedere che fanno 0, non capisco la ragione per cui da uno si debba vedere l'altro e che utilità abbia la seconda. Sapreste spiegarmelo?

Fede_16
$ T_{AB}(2L)=4qL $$ CD $Salve, ho svolto un esercizio sulle verifiche di resistenza di travature. Riporto il testo qua di seguito Scegliendo arbitrariamente il verso dei vettori $V_A$,$V_D$,$V_C$ verso l'alto e $H_C$,$H_D$ verso destra. Ho da subito calcolato le reazioni vincolari ottenendo: $H_C=0$, $H_D=-2qL$, $V_D=2qL$, $V_A=4qL$, $V_C=2qL$. Procedo al calcolo ...
8
23 gen 2024, 15:12

sime-one1
sera, volevo capire un passaggio del libro che non capisco a fondo. devo calcolare il gradiente per r di: $nabla_x(1/(|vecr-vecr'))$ Io ho operato come (faccio solo la componente x): $[nabla_r(1/sqrt((x-x')^2+(y-y')^2+(z-z')^2))]_x=$ $=(sqrt((x-x')^2+(y-y')^2+(z-z')^2))^(-1/2)=-1/2(sqrt((x-x')^2+(y-y')^2+(z-z')^2))^(-3/2)*2(x-x')=(x-x')/(|vecr-vecr'|^3)$ evidentemente y,z si comportnao uguali e ho: $(r-r')/(|vecr-vecx'|^3)$ Detto ciò il suggerimento del libro è il seguente (per svolgere il calcolo) - e io non capisco bene il suggerimento- : $d/(dx)|g(x)|=(g(x))/(|g(x)|)(dg)/(dx)$ Cioè sembra quasi suggerire di chiamare $|vecr-vecr'|=|g(x)|$ e fare la derivata del ...
12
31 dic 2023, 17:32

oleg.fresi
Ho questo problema: determinare l’equazione cartesiana e successivamente le equazioni parametriche della sfera tangente al piano $π : 3y − 2z + 3 = 0$ nel punto $P = (−1,−1,0)$ ed avente centro sul piano $π′ : 3x+y+2z+5=0$ Il procedimento a cui ho pensato è questo: per trovare l'equazione mi serve trovare il centro e il raggio. Una volta noto il centro, per avere il raggio calcolo la distanza dal punto di tangenza al centro oppure la distanza dal punto di tangenza al piano ...
11
23 gen 2024, 14:58

Str11
Buonasera. Sapreste indicarmi un eserciziario alternativo al Marcellini Sbordone su integrali multipli, integrali di superficie e forme differenziali lineari?
6
23 gen 2024, 17:39

ncant04
Riporto il seguente studio di funzione, nella speranza che mi venga chiarito un dubbio in merito alla derivata seconda di $ f $. Data la funzione \(f : \mathcal{D} \to \mathbb{R}\) di legge: \[ f(x) := \begin{cases} (x-1)e^{\frac{1}{x-1}} & \text{se } x > 1 \\ 0 & \text{se } x = 1 \\ -(x-1)e^{\frac{1}{x-1}} & \text{se } x < 1 \end{cases} \] il proprio dominio naturale risulta essere \[ \mathcal{D} = \mathbb{R} \] in quanto definita in tutto $ \mathbb{R} $. Per quanto ...
1
24 gen 2024, 00:22

HowardRoark
La matrice di partenza è $ M= ((3,k),(1,3))$. Devo calcolarne autovalori e autovettori e dire se è diagonalizzabile. $|M-lambdaI|=|((3-lambda, k), (1, 3-lambda))| = (3-lambda)^2-k => lambda^2-6lambda + 9 -k$. Pongo il polinomio caratteristico uguale a 0 e trovo gli autovalori: $lambda^2-6lambda + 9 - k=0 =>lamda_(1,2) = 3+-sqrt(k)$. Ora, per $k<0$ non esistono autovalori reali, per $k=0$ la molteplicità algebrica e molteplicità geometrica dell'autovalore $lambda=3$ non coincidono e pertanto la matrice non è diagonalizzabile. Studio ora il caso ...

weblan
Sarei contento se qualcuno si prendesse la briga di risolvere questo sistema non lineare. https://www.matematicamente.it/forum/vi ... 5&t=235379 Ovviamente con qualche software!

keyzan1
Raga mi servirebbe una mano per questo esercizio. Dal momento che non ho le soluzioni degli esercizi e chat GPT non è per niente affidabile, chiedo a voi per capire se i miei ragionamenti sono giusti o sbagliati. Uno di questi esercizi recita: Allora per quanto riguarda il punto 1, per prima cosa devo determinare gli autovalori dell'energia totale delle due particelle, cioè: $$\hat H_{tot}|\psi \rangle = (\hat H(1) + \hat H(2))|\psi \rangle = \lambda_{tot} ...

SmallDoku
Ciao a tutt*, sono nuovo qui e spero di farvi divertire. Ringrazio in anticipo chi mi aiuterà. Se potete, spiegatemi anche come fare i calcoli, non datemi solo le soluzioni (o se volete spiegatemi solo come fare i calcoli, senza risolvere voi il problema). Grazie mille! Mi servirebbe una mano per fare questo calcolo: devo valutare la probabilità che 1 o più bambin* sopravvivano e che abbiano almeno 1 figli* a loro volta, sapendo che se un* bambin* che cresce con un solo genitore o che ha altri ...
5
23 gen 2024, 01:18

simpronic
Salve ragazzi di matematicamente. Ultimamente sto esercitandomi sugli integrali ma trovo difficoltà con questi due: $ int(2x^4+4)/(x^3+1) dx$ e $ int(7)/(3-5*x^(1/3)) dx $ Qualcuno saprebbe svolgerli per illustrarmi i passaggi ? Ringrazio chiunque possa aiutarmi.
6
22 gen 2024, 23:31