Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Ciao, volevo fare una domanda: quando mi trovo davanti ad un integrale da risolvere, come faccio a sapere quale metodo utilizzare tra un'integrazione per parti e un'integrazione per sostituzione? Cioè, esiste "un trucco" da tener presente che mi indirizzi subito al metodo più appropriato? Grazie sin da adesso
Ciao a tutti. Io non riesco a capire un passaggio nello svolgimento d'un integrale indefinito.
L'integrale iniziale è questo: $\int sqrt(2x+5) dx$. Come passaggio successivo mi viene indicato questo: $1/2 \int 2(2x+5)^(1/2)dx$ Però mi domando: eliminando la radice io elevo l'argomento (ovvero $2x+5$) a $1/2$ e quì ci sono. Poi però non capisco perchè il 2 venga portato fuori dalle parentesi rimanendone allo stesso tempo anche dentro di esse. Stesso discorso per l'esponente ...
Salve ragazzi,vi enuncio le frasi che non mi tornano su questo argomento.
Sia E l'insieme ,del piano $XY$ ,costiuito dal quadrato $q$:$0<=x<=1$ $0<=y<=1$, con coordinate espresse con numeri razionali.
Perchè la misura interna di questo insieme è zero?A prima vista mi sembra che comunque posso vedere dei plurirettangoli all'interno di q.
Cosa ne pensate?
Rieccomi alle prese con Galois...
Ho qualche dubbio su un esercizio (di cui comunque ho anche la soluzione):
Es. Sia $\zeta \in CC$ una radice primitiva settima dell'unità. Determinare il polinomio minimo di $\alpha := \zeta^3 +\zeta^5 +\zeta^6$ su $QQ$ e il polinomio minimo di $\zeta$ su $QQ(\alpha)$
Sol.
1) Sia $\beta = \zeta +\zeta^2 +\zeta^4 = \bar(\alpha)$, le immagini distinte di $\alpha$ sono $\alpha$ e $\beta$, quindi il polinomio minimo è $(x-\alpha)(x-\beta) = x^2 +x -2$.
Il ...
Questa serie $\sum_{n=1}^\infty log(n^(sin(1/n^2)))$ converge? Ovviamente il criterio del rapporto e della radice non portano da nessuna parte; utilizzando il confronto asintotico possiamo studiare il carattere della serie $\sum_{n=1}^\infty (logn)/n^2$...possibile che l'unico criterio applicabile sia quello integrale?
Sul libro ho visto un esercizio svolto, di cui non ho capito bene questo passaggio:
$(2n+2)!$=$(2n+1)*(2n+2)*(2n)!$
Non capisco perchè si possa scomporre cosi.
Potete spiegarmelo?
C'è forse qualche regola che si applica qui?
Grazie
Sto facendo qualche esercizio sulle serie di funzioni,volevo un vostro parere
Stabilire la convergenza puntuale e uniforme delle seguenti successioni di funzioni.
$n*sen(nx) * e^(-nx)$
Per trovare la convergenza puntuale, ne faccio il limite per $n -> infty$
Il limite (se ho fatto bene) è infinito, in questo modo
$lim f_n(x) = n^2 * (sen(nx))/n * e ^(-nx)$
Quindi ho infinito, x e 1. Il limite è infinito.
In questo caso, cosa devo fare? La convergenza è puntuale? Sicuramente non è ...
Ho provato a svolgere questo esercizio, ma non sono sicuro che la dimostrazione da me data sia corretta, mi piacerebbe ricevere dei consigli a riguardo:
Sia $G$ un gruppo che agisce su $X,Y$ insiemi e $x_0inX$ e $y_0inY$. Se $G$ agisce transitivamente su $X$ e $stab (x_0)substab(y_0)$, dimostrare che è data una mappa $G$-equivariante $phi:X->Y$
La soluzione a cui sono giunto è che se pongo ...
Salve a tutti raga, ho un problema con questo integrale. So che dovrevve essere fatto con Hermite, ma il metodo nn mi è molto chiaro....... Spero che qualcuno mi aiuti!!! GRAZIE CMQ!!!
$ int_ <(x^4+16)/(x^2+4)^3> $
Avrei questa funzione in cui devo calcolare gli eventuali punti di massimo e di minimo relativi
$f(x,y)=|x-y|xy$
Come sempre il caro e vecchio valore assoluto intimorisce orde di studenti da generazioni ed io sono uno di quelli. Il mio dubbio sta se devo dividere la funzione studiandola dove $x-y>=0$ e $x-y<0$ oppure studiandola con tutto il valore assoluto?
Ciao.
Dovrei studiare la convergenza puntuale e totale della serie $ sum (1+sin (nx))/(1+(n^2*x^2-1)^2) $
Ho dei problemi per la convergenza totale.
Ho provato a fare la derivata per trovare il sup ma viene un'espressione troppo complessa da discutere. Quindi ho pensato di fare questo ragionamento:
$ 0 <= (1+sin (nx))/(1+(n^2*x^2-1)^2) <= 2/(1+(n^2*x^2-1)^2) $
Da cui: $ || (1+sin (nx))/(1+(n^2*x^2-1)^2) || <= || 2/(1+(n^2*x^2-1)^2)|| = 2 $ che non converge. Questo risultato però non mi permette di utilizzare il criterio del confronto per concludere che la mia serie non converge, giusto?
Quindi come ...
$ lim_(x -> 0) (1 / (2x-x^2) - 1 / (x-5x^2)) $
Il limite si presenta nella forma indeterminata $ \infty - \infty $.
Dopo aver fatto due passaggi ottengo: $ lim_(x -> 0) ((-1-4x) / (x(2-x)(1-5x))) $
A questo punto devo necessariamente scindere il limite in:
$ lim_(x -> 0^{+})((-1-4x) / (x(2-x)(1-5x))) $
e
$ lim_(x -> 0^{-})((-1-4x) / (x(2-x)(1-5x))) $
o posso direttamente calcolare il limite: $ lim_(x -> 0) ((-1-4x) / (x(2-x)(1-5x))) $ ?
Quali sono le vostre motivazioni in proposito e qual è secondo voi il risultato?
Grazie
$y=sqrt(x^2-1)/(x^2-4)$
$y'=[1/2(x^2-1)^(-1/2)2x(x^2-4)-(x^2-1)^(1/2)2x]/(x^2-4)^2=[(2x)/(2sqrt(x^2-1))(x^2-4)-2xsqrt(x^2-1)]/(x^2-4)^2$
penso di aver fatto bene fino a qui solo che non so come continuare mi date una mano x favor???
Dire quali trai gruppi $D_6$, $D_12$, $D_11$ contengono un sottogruppo ciclico di ordine $6$.
Con $D_n$ si denota il gruppo diedrale ${g,h; g^n=e, h^2=e, hg=g^(n-1)h}.<br />
<br />
Essendo $o(D_n)=2n$ si ha subito, per Lagrange, che non esistono sottogruppi di ordine $6$ per $D_11$.<br />
<br />
Mi costruisco $D_6$:<br />
$D_6={g,h; g^6=e, h^2=e, hg=g^5h}={e,g,g^2,g^3,g^4,g^5,h,hg,hg^2,hg^3,hg^4,hg^5}$, da qui mi accorgo subito che $$$={e,g,g^2,g^3,g^4,g^5}$ è il sottogruppo ciclico cercato.<br />
<br />
Similmente per $D_12$:<br />
$D_12={g,h; g^12=e, ...
considerato il seguente limite, $lim_(x to 0) ( (1)/(1-cosx)-(2)/(x^2))$ ;
eseguiamo il m.c.m per ricondurci ad una forma più appropriata ..... la forma $0/0$
e si ha quindi $lim_(x to 0) (x^2-2(1-cosx))/(x^2(1-cosx))$ applichiamo il noto teorema di de l'hopital ed abbiamo:
$lim_(x to 0) (2(x-senx))/(2x(1-cosx)+x^2senx)=$ deriviamo ancora e arriviamo ad $lim_(x to 0) (2(1-cosx))/(2(1-cosx)+4xsenx+x^2cosx)=$
Ora da quì in poi c'è un passaggio che non mi è chiaro; Praticamente nel testo si divide numeratore e denominatore per la funzione di grado massimo in questo caso $x^2$; ...
$log log f(x)$ come bisogna interpretare?? come un prodotto di logaritmi a base naturale ... o il logaritmo del logaritmo è tutt'altra cosa ?
thankx.
buongiorno ,
ho bisogno di aiuto , ecco la pima domanda :
studiare la continuità della seguente fnzione.
$H(x) := lim_(n-> oo) [cos^(2n) x + sin^(2n) x]^(1/(2n))$ in cui $x$ è un reale.
grazie
$|cos|x+1||$
ci sto perdendo un sacco di tempo ma nn riesco a capire come procedereho provato facendo:
$-sen x+1+cosx$
Salve vorrei delucidazione su questo campo di esistenza:
f(x)= $ log (arcsin(sqrt(x) - x )) * log (x+1)/sqrt(arctan(x ) ) $
allora io ho pensato di fare così:
$ { ( arcsin(sqrt(x) -x )>0 ),( x-1>0 ),( arctan(x)>0 ):} $ $ { ( sqrt(x)-x>0 ),( x>1 ),( x>0 ):} $ adesso calcolando la prima con $sqrt(x)>x$ con $ { ( x>=0 ),( x<=0 ):} uu { ( x>0 ),( x>x^(2) ):} $ mi viene fuori $0<=x<1$ e quindi $ { ( 0<=x<1 ),( x>1 ),( x>0 ):} $ adesso sbaglio io qualcosa? (sicuramente ^^) o questa funzione non ammette soluzioni?
Adesso mi viene un dubbio ma con un prodotto di mezzo è giusto fare due sistemi uno per ogni fattore del ...
ciao a tutti qualcuno potrebbe aiutarmi su questo mio problema?
io ho due famiglie di insiemi $A_k$ e $B_k$ qualsiasi, volevo sapere se
$\bigcap_{k}(A_{k}\cap B_{k})=(\bigcap_{k}A_{k})\cap (\bigcap_{k}B_{k})$
oppure vale una relazione di inclusione fra queste due espressioni?
grazie mille