Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Seneca1
Esercizio: $AA n in NN$ sia $f_n$ una funzione convessa definita su $RR$. $AA x in RR$ sia $bar(f) (x) = "sup"_(n in NN) f_n (x)$. Si provi che $bar f$ è convessa. $E = { f_n , n in NN }$ è un insieme di funzioni convesse. L'unica idea che mi è venuta è quella di considerare la famiglia $g_n$ delle rette di appoggio al grafico di $f_n$ nel punto $x$ e definire $bar(g)(x) = "sup"_(n in NN) g_n (x)$, e provare che si tratta della retta di appoggio ...
4
31 gen 2011, 19:55

vinc_89
Salve a tutti, so che è una stupidaggine ma non riesco a fare il risultato(cioè grafico) del segnale cosi fatto y(t)=Tri(t) - Rect(t/2). So che un segnale Rect(t/2) - Tri(t) di ugual durata mi da come risultato un Tri con il vertice(considerati entr4ambi i segnali centrati nell'origine) nell'origine degli assi, ma quello non capisco come farlo. Ogni volta mi vengono questi dubbi stupidi che non riesco a togliere. Scusate per l'immagina ma ero di fretta. Grazie in anticipo per l'aiuto
5
29 gen 2011, 00:35

giozh
devo fare alcuni esercizi sulle trasformate di laplace, ma non ho le soluzioni, mi potete dare una mano? la prima su cui ho dei dubbi è la trasformata di [tex]y(t)=t^2\delta_{-1} (t-2)[/tex] dove con delta a meno 1 intendo il gradino unitario. guardandola, non mi viene in mente nessuna proprietà che conosco, perchè c'è quel t al quadrato che mi scombussola tutto...
3
31 gen 2011, 16:01

bartofra
Ciao a tutti, ho il seguente sistema differenziale: $ x' = - x^3 + xy^3 $ $ y' = - y^5 + x^2y^4$ Avrete gia capito di cosa si tratta. Considero , il punto di equilibrio (0,0) che chiaramente non è l'unico. In questo punto la matrice jacobiana è la matrice nulla $((0, 0),(0, 0))$. L' esercizio chiede di stabilire il tipo di equilibrio che si ha in (0,0). Io penso che se la matrice che rappresenta un sistema dinamico è la matrice nulla, qualsiasi punto è di equilibrio. In questo caso quindi ...
3
31 gen 2011, 23:15

tenebrikko
scusate, mi confermate che il dominio della funzione $f(x) = 4 arcsin (1 - log(x-1))$ è $2<= x <= 10^2 + 1$ ? perchè i risultati mi dicono che è $ 2<= x <= e^2 +1$ ma non capisco da dove salti fuori $e$ grazie
4
31 gen 2011, 17:31

Luisella90
Salve a tutti sono nuova del forum, scusatemi in anticipo per eventuali errori! Sto riprendendo in mano analisi I e non ho chiari alcuni punti di questo esercizio: Sia: $ Fa(x):{ ( (2+5x)/(|x|+3)+a se x<0 ),( sqrt((x+4)/(|-3x|+9)) se x>0 ):} $ Discutere continuità e derivabilità di Fa al variare di a. Prima di tutto eseguo i valori assoluti: $ |x|{ ( x se x>0 ),( -x se x<0 ):} $ Prendo -X perchè mi serve 0. Adesso a logica mi verrebbe di studiare il campo di esistenza: Per la prima mi viene $ x != 3 $ ma considero ...
5
31 gen 2011, 10:57

gila89
Salve a tutti l'altro giorno stavo provando a fare un integrale ma mi sono letteralmente incartato, non riesco a ricavare una primitiva perché non riesco neanche a capire che sostituzione devo fare, ve lo scrivo: $int(2+cos^2x)/(1+sin^2x)dx$ Non è necessario che mi scriviate tutti i passaggi, mi basta anche solo la sostituzione da effettuare. P.S. Ho provato a sostituire $cosx$ con $(1-t^2)/(1+t^2)$, $sinx$ con $(2t)/(1+t^2)$ e $dx$ con $(2t)/(1+t^2) dt$ ma è ...
3
31 gen 2011, 21:13

AgentZero1
come si fa a determinare se un sottogruppo è normale?cioè, il teorema dice $a^-1*h*a in H$, $a in G$(gruppo), $h in H$(sottogruppo). Quindi supponiamo che io ho una permutazione $s in s_8$, e un sottgruppo generato da tale permutazione, ad esempio $H={s^2,s^3,s^4}$. Per vedere se H è normale devo verificare che $s^-1*s^2*s in H$? Quindi che tale quantità sia uguale ad $s^2,s^3$ o $s^4$? Oppure $s^-1*s^2*s = s^2$(e così via anche per ...

Seneca1
$lim_n 1/n * root(n)( 1 + 2^2 + 3^3 + ... + n^n )$ Mi sono bloccato tentando di trovare una successione maggiorante: $1/n * root(n)( 1 + 2^2 + 3^3 + ... + n^n ) <= n^(n+1)$ $1 + 2^2 + 3^3 + ... + n^n <= n^(n(n+2))$ $1 + 2^2 + 3^3 + ... + n^n <= (n^n)^(n+2)$ Ma questa è vera da un certo $bar n$ in poi?
4
31 gen 2011, 14:39

Seneca1
Esercizio: Sia $f$ continua su $[a , +oo[$ e derivabile su $] a , +oo[$. Dimostrare che se $f(a) = lim_(x -> +oo) f(x)$ allora esiste $xi > a$ con $f'(xi) = 0$. Svolgimento: Considero $x > a$ e applico Lagrange in $[a , x]$: $EE xi in ] a , x [$ tale che $f'(xi) = (f(x) - f(a))/(x - a)$ Mandando $x -> +oo$ si ha che $EE xi in ] a , +oo [$ tale che $f'(xi) = 0$. EDIT: Mi sono accorto che ho preso una cantonata. Non uso precisamente ...
8
31 gen 2011, 01:34

gbspeedy
convergenza puntuale e uniforme per $ x in RR $ e $ x in [-oo , M ] $ di fn(x)= 1 se $ x in [n,n+1] $ e 0 altrove
3
31 gen 2011, 12:31

d4ni1
Dunque ecco l esercizio: Dato un insieme $X$ di cardinalità infinita indichiamo con $Xc$ lo spazio topologico $X$ con la topologia cofinita. 1)Sul prodotto $XxX$ definiamo due topologie: $(Xc$ $x$ $Xc)$ e $(X$ $x$ $X)c$. Coincidono? Risp: mi pare che in entrambi i casi la classe di insiemi $(AxB)$ al variare di A e B tra gli aperti di Xc sia una ...
2
31 gen 2011, 19:22

ANDREAHF1
Sotto vedete il testo del'esercizio! ho un problema sul determinante della matrice incompleta che è quadrata mi esce 1=0! http://img833.imageshack.us/img833/6357 ... e00201.pdf
9
31 gen 2011, 17:08

bartel
Siano x1, x2,......., xn $ in $ $ CC $ tali che $ (X)^(7) $ + X + 2 =( X - x1)(X - x2)..... (X - x7). a) Determinare x1 + x2 + .......+ x7. b) Dimostrare che $ (x1)^(3) + (x2)^(3) $ + ........+ $ (x7)^(3) $ = 0 Grazie ragazzi non so da dove partire

cowgirl_from_hell
Salve! Vi sarei grata se poteste aiutarmi con questo esercizio: Sono dati, in R4 , i sottospazi vettoriali: U = $(x, y, z, t) in R^4: x + 2y = 2t = 0$ V = $(1; 2; 0; 1) , (2; 4;-1; 1) ; (0; 0; 1; 1) ; (1; 2; 4; 5) ; (1;-1; 0; 5)$ (a) Determinare la dimensione e una base di U e V ; (b) Determinare la dimensione e una base di .U \ V e U + V: U + V è una somma diretta? (c) Il vettore $v = (1; 2; 3; 4)$ appartiene a $U + V$ ? In caso affermativo decomporlo nella somma di un vettore di U e di un vettore di V , in tutti i modi possibili (a meno di ...

Cherie_87
Salve a tutti, mi sono appena registrata e vedo che qui c'è un bel movimento e questo mi rende felice, spero ci sia qualcuno che può aiutarmi; il problemaè il seguente: UN BLOCCHETTO DI MASSA M è FERMO SU UN PIANO ORIZZONTALE SCABRO DI COEFFICIENTE D'ATTRITO STATICO RELATIVO a. SOPRA IL BLOCCHETTO SI TROVA IN CONDIZIONI DI RIPOSO UNA MOLLA DI COSTANTE ELASTICA k AVENTE UN ESTREMO SALDATO AL BLOCCO STESSO. UN PROIETTILE DI MASSA m, DIRETTO SECONDO L'ASSE DELLA MOLLA, URTA CON VELOCITà v ...

Fioravante Patrone1
Segnalo il mio ultimo contributo alla rivista di divulgazione "Lettera Matematica PRISTEM": http://www.diptem.unige.it/patrone/divulgazione-pat.htm Il titolo è lo stesso di questo messaggio. Mi pareva il caso di smorzare un po' i facili entusiasmi che ci sono in giro rispetto a questa idea di soluzione per giochi in forma strategica.

AgentZero1
ciao a tutti...ho un problema con i campi di galois. Quando faccio la moltiplicazione, poi devo ridurre per il polinomio dato..Come si effettua la riduzione per il polinomio?ho problemi sopratutto quando i coefficienti sono maggiori di uno!! Esempio: dato il polinomio $f(t)=t^2+t+2$ di $Z_3[t]$, costruire il campo di galois GF(9). Mi calcolo $(0,0),(1,0)$ ecc.. Quando vado ad elevare al quadrato $(2,2)$, per esempio, dovrebbe uscire $(1,2)$, invece a me ...

Amartya
Cari amici. Ho un problema che non riesco a risolvere; ho un gruppo $G$ di ordine $64$ e so che il suo centro $Z(G)$ ha ordine $32$, sia dato adesso un sottogruppo $H$ di ordine $16$ devo dimostrare che in $H$ esiste un sottogruppo abeliano di ordine $8$. L'esistenza del sottogruppo di ordine $8$ è garantita da Sylov, infatti il gruppo $G$ ha ordine ...

skyisoverus
Ho appena fatto il compito di geometria I e credo proprio di aver sbagliato un esercizio.. Sia $V = R[x]<=3$ lo spazio vettoriale dei polinomi di grado minore o uguale a 3. Al variare di $a in R$ si consideri il sottoinsieme: $Wa = {p in V | p(1) = p'(1) = p''(1) = a}$, dove $p'$ e $p''$ sono rispettivamente la derivata prima e seconda di $p$. i) Si determini per quali valori di $a$, $Wa$ è un sottospazio vettoriale di V. ii) ...