Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
mazzy89-votailprof
ho quest'esercizio che credo di averlo fatto giusto ma quando applico la formula di grassman non ho il risultato voluto nello spazio vettoriale $RR^4$ sono assegnati i vettori $v_1=(3,2,1,1)$ $v_2=(0,1,0,2)$ e $v_3=(2,1,0,0)$ e i seguenti sottospazi $V={(x,y,z,t)inRR^4 | x=y}$ e $W=L(v_1,v_2,v_3)$ determinare $V+W$ e $VnnW$ dunque se non erro $dimW=3$ perché abbiamo tre vettori che generano $W$ e $dimV=3$ poiché abbiamo tre ...

mazzy89-votailprof
salve.se ho una serie di vettori $v_1,v_2,v_3,v_4,v_5,v_6$ e vorrei verificare se sono linearmente indipendenti o meno.devo allora calcolare il rango della matrice.se questo è massimo ovvero pari a 6 allora i vettori saranno linearmente indipendenti.ma i vettori come li sistemo per riga o per colonna?

derPiX
Ciao, nello svolgimento del teorema di Rolle, sto riscontrando delle difficoltà nella verifica della derivata in un dato intervallo. Il teorema infatti afferma che una funzione f(x) sia continua in [a; b], derivabile in (a; b) e ed esiste un f(c) che appartiene ad (a; b) / f* (c) = 0 Date ad esempio queste due funzioni, come posso sapere che sono derivabili nell'intervallo?
4
31 lug 2011, 17:23

Quinzio
MI trovo il seguente passaggio in un t. che usa il t. di Lagrange: [tex]f(x)-f(y)= (x-y)f'(c)[/tex] poi compaiono i moduli e il segno minore uguale. [tex]|f(x)-f(y) | \le |(x-y) | |f'(c)[/tex] Il tutto compare in un a dimostrazione sull lipschtzianità di una funzione a questo indirizzo http://users.dma.unipi.it/~gobbino/Tabl ... 1_L055.pdf La mia domanda: chiarito che mettere il segno $\le$ nella formula è corretto, cioè non si può dire che quella scrittura sia falsa, che bisogno c'è ? Cioè se prendo il t. di ...
5
31 lug 2011, 16:12

thequeenrorina
Ciao, sto riscontrando problemi nello svolgere limiti di successioni ( o di funzioni per x che tende a infinito) con Taylor, cosa che invece mi capita meno nei limiti per x che tende a zero, quindi penso di non avere molto le idee chiare. Tanto per fare un esempio, se devo risolvere il limite per x che tende a infinito di $ root(4)(x^4+x^3+1)-x $ così com'è non potrei applicare subito lo sviluppo di Taylor, quindi quello che mi viene in mente di fare è di porre $ 1/x=y $ , quindi per x ...

hamming_burst
Salve, sto ripassando alcuni argomeni di matematica discreta. Sto vedendo al momento relazioni, cardinalità e funzioni parziali/totali. Allora, se ho una un insieme prodotto $XxX$ ed una relazione binaria $RsubeXxX$. Posso dire cio: ? - Questa relazione $R$ è una funziona totale: $R:X -> X$ essendo una funzione da $X$ in se stesso, cioè $dom(R) = X$. - La cardinalità di $R = |X^X|$. Ringrazio

chrischris
ciao a tutti, sono nuovo e ho un problema da porvi, dato il testo Sia dato un corpo costituito da una sbarra omogenea di sezione trascurabile (densità lineica λ=1 kg/m) sagomata in modo da formare un triangolo equilatero di lato l =25 cm. Il triangolo sia sospeso in uno dei vertici ad un asse orizzontale intorno al quale possa ruotare senza attrito. il dubbio riguarda il calcolo del momento di inerzia del sistema. vi spiego meglio: 1-il momento di inerzia I ...

Holy1
Da un'appello: Trovo senza problemi la soluzione per cui: " y => - x " Da dove salti fuori il semicerchio lo ignoro, una mano?
5
31 lug 2011, 15:32

samsung90
Ragazzi come risolvo questo esercizio? Determinare la trasformazione lineare f da r3 in r4 che manda v1= (1,-2,-1) su w1= (-4,-3,1,-3), v2 =(-1,-1,2) su w2= (1,1,7,-1) e v3=(-2,-1,1) su w3=(3,0,6,2) e calcolare u=f (5,-2,-1).
5
25 lug 2011, 12:01

colorweber
Buongiorno, come appassionato di matematica vorrei chiedere se qualcuno conosce di una teoria o teorema che leghi in senso logico i numeri esponenziali, fattoriali e la formula del triangolo di tartaglia. Mi spiego: Ho osservato che partendo da numeri esponenziali arrivo ai numeri fattoriali e da questi ultimi ricavo la formula di tartaglia. Penso che tramite un sistema o teorema di potrebbe trovare facilmente la radice quadra, triangolare etc. di un numero senza sistemi complessi. Ecco lo ...
1
31 lug 2011, 12:35

Uomosenzasonno
Spero nn vi dispiaccia se in questo periodo posterò molte domande sul forum.. Comunque sto' cercando di risolvere un esercizio d'esame sul calcolo dell'area di una superficie, volevo capire se ho ragionato in modo corretto: [edit... tt quello che avevo postato era sbagliato...] Devo riuscire a parametrizzare la curva giusto? da dove parto? (intanto riprovo a risolvere e edito se trovo la soluzione: Mah.. vi dico come ho fatto... boh.. T__T pongo $ x = mu*cos alpha $, $ y = mu*sen alpha $, ...

mazzy89-votailprof
ho un esercizio che non sto potendo risolvere perché non riesco a uscirne concettualmente l'esercizio è questo: Determinare la matrice associata, rispetto alle basi canoniche, al generico endomorfismo $g$ di $RR^4$ tale che la restrizione di $g$ a $V$ è uguale a $f$ e $dimKerg=1$ $f$ è l'applicazione lineare $f:V->RR^4$ definita dalle relazioni ...

Jack911
Calcolare il valore dell'integrale doppio ∬ e^ (|x|+|y|) dx dy sul cerchio B= {(x,y): x^2 + y^2
1
30 lug 2011, 22:10

gcappellotto
Salve a tutti La seguente è la matrice associata ad un sistema di tre equazioni con variabili x, y, z, w. (La terza equazione ha i coefficienti e il termine noto tutti nulli). \[ A|b= {\pmatrix{{1}&{2}&{0}&{1}&|&{1}\\ {0}&{1}&{0}&{1}&|&{0}\\ {0}&{0}&{0}&{0}&|&{0}}} \] ho trovato queste soluzioni: $x+2y+w=1$ $y+w=0 \to y=-w$ sostituendo nella prima equazione: $x-2w+w=1 \to x=1-w$ non mi sembra una soluzione corretta, potreste darmi qualche consiglio? Grazie e saluti Giovanni C.

marcus1121
Avrei un dubbio! Ho questo sistema: $ax+by=2z$ $(x-y)/(a-b)+z/(ab)=0$ $a(z+x)=a+1$ Dopo aver stabilito le $C.E.: a !=b^^a!=0^^b!=0$ riducendolo a forma normale arrivo a: $ax+by-2z=0$ $abx-aby+z(a-b)=0$ $az+ax=a+1$ Il determinante della matrice incompleta ottenuta dopo i calcoli è $-ab(a+1)(a+b)$; per cui, considerando le condizioni di esistenza, per $a!=-1^^a!=-b$ il sistema ha un'unica soluzione.(Dovrebbe essere così!) Il dubbio è questo per $a=-1^^a=-b$ come si deve ...
12
25 lug 2011, 13:52

dark.hero
Ciao a tutti potete spiegarmi perchè $ Sup_(x in [0,1)) |x^n|=1 $ ? grazie
12
29 lug 2011, 18:23

Quinzio
Mi trovo un dubbio atroce che devo risolvere, non ho bisogno della soluzione quanto di essere rassicurato sulla corretta interpretazione. Determinare: [tex]\inf \left \{x^2+1: x \in [-1,1] \right \}[/tex] [tex]\sup \left \{x \in \mathbb{R}: x^2+1 \leq 3 \right \}[/tex] IL mio dubbio è: nel primo esercizio si chiede di trovare un valore delle "y" che sarebbe un $x^2+1$, non il valore $x$ tale per cui $x^2+1$ ha l'inferiore. Cioè la risposta è 1.... ? Nel ...
2
31 lug 2011, 11:41

Uomosenzasonno
Salve ragazzi, ho un problema che mi sta' facendo impazzire. Premetto che sono ormai un po' di anni che nn affronto problemi di matematica "pura", percui non tutti i concetti sono limpidi nella mia mente. Oggi non sono riuscito a dimostrare che il seguente integrale converge: Devo dimostrare che il limite per x->0+ dell'integrale esiste ed è finito giusto? Grazie

Jack911
Serie numerica Miglior risposta
∑[ n=1 , +inf ] { [ sin( sin( n ) ) ]^n } A fatica sono riuscito a concludere che la successione è infinitesima ( anche se non ho tutta la certezza ) . Comunque sia i grattacapi iniziano ora : infatti essendo a termini qualsiasi l'unico criterio che conosco per questi casi disperati è dimostrare la convergenza assoluta . Come fare in questo esercizio ? Grazie 1000 nuovamente :) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Recepito prof ...
1
30 lug 2011, 22:15

trotta82-votailprof
Ho questa struttura praticamente sulla cerniera B è applicata una FORZA f pari a 1 come posso trovarmi le reazioni vincolari ? Le distanze AG = 8 GB =7 BC= 8 CD= 8 DE = 17 allora io cosa ho fatto so che ( - Bsinistra - Bdestra = 1 ) Bd = 0 quindi Bsinistra = F =1 quindi la reazione di A rivolta verso l'alto è = 1 e Ma = 15 rivolta in senso antiorario quindi essendo Bs = 0 anche c lo è e quindi anche Md e la reazione di E . Quindi le equazioni dei tratti sono TA ...
1
24 giu 2011, 17:47