Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
paxpax92
sia f(x) : [0,+infinito]->R tale $sin(x)<=f(x)<=x$ e tale che esista l=lim di f(x) per x->+infinito sono riuscito a dimostrare quanto vale f(0) e f'(0) a dimostrare per assurdo che il limite infinito non può essere
5
7 feb 2012, 23:31

davidinho92
A breve avrò l'esame orale di logica matematica ma ho molta difficoltà a capire alcune cose dell'algebra di Boole Alle superiori sono stato "cresciuto" con l'idea che l'algebra di Boole fosse quella costituita da 0, 1, AND, OR, NOT, ora invece leggendo sul libro è presentata come la conversione delle operazioni tra insieme in operazioni numeriche e quella che io ho sempre ritenuto algebra booleana è vista come "un tipo di algebra di Boole"... Probabilmente il mio messaggio sembrerà un po' ...

gundamrx91-votailprof
Calcolare $lim_{x to +infty}x(a+sin(x))$ per $a in RR$. Sappiamo che $-1<=sin(x)<=1$ $AAx in RR$ allora si ha che $-1<=a+sin(x)<=1$ e $a-1<=a+sin(x)<=a+1$ $AAx in RR$. Quindi abbiamo $x(a-1+sin(x))<=x(a+sin(x))<=x(a+1+sin(x))$ $AAx in (0,+infty)$ Posto $f_1(x)=x(a-1+sin(x))$ e $f_2(x)=x(a+1+sin(x))$ allora $AAU(+infty), x in U => f_1(x)<=f(x)<=f_2(x)$ Inoltre $lim_{x to +infty}x=+infty => x=lim_{x to +infty}f_1 (x)=lim_{x to +infty}f_2 (x)=+infty$ da cui $lim_{x to +infty} f(x)=limlim_{x to +infty} f_1(x)=lim_{x to +infty} f_2(x)=+infty$ E' corretto?

nunziox
Data la forma differenziale: $omega=y/(2(sqrt(xy)+xy))dx+x/(2(sqrt(xy)+xy))dy$ calcolare: $int_gamma omega$ essendo $gamma$ il sostegno della curva di equazione $(2+t,1/(1+t^2))$ con $t in [0,1]$ Calcolando i punti iniziali e finali sostituendo i valori 0 e 1 alla parametrizzazione della curva, trovo i valori iniziali e finali della curva $(2,1)$ e $(3,1/2)$. Inoltre siccome la forma differenziale è chiusa e nel semipiano $ ] 0;+oo [$ x $ ]0,+oo[ $ la forma differenziale è ...
10
12 feb 2012, 11:17

ingegnè
Giorno, seguendo l'esempio di alcuni esercizi già svolti provavo a fare questo: Sia $ B_1 $ una base ortonormale e sia $ B_2 = ( [+2,+1,+1]_(B_1) , [+1,-1,0]_(B_1), [+1,+1,+1]_(B_1) ) $ un'altra base ( non ortonormale ). Determinare la matrice del prodotto scalare rispetto a $ B_2 $ . Io seguendo passo per passo l'esercizio ho fatto così: Sia $ B'= ( u_1,u_2,u_3) $ la base ortonormale che devo ottenere da $ B_2 $. Costruisco una base $ B''= (w_1, w_2,w_3) $ di vettori a due a due ortogonali. $ w_1=v_1=(2,1,1) $ ...
7
11 feb 2012, 12:03

Bonfi171
Salve a tutti io sono un ragazzo che frequenta il primo anno di matematica a Milano e tra pochi giorni ho un'esame di algebra lineare.. e non ho ben capito alcune cose posso chiedere a voi un aiutino? Questo è un'esercizio "guida" che vi fa capire un po' le mie difficoltà: Nello spazio vettoriale V dei polinomi di grado minore o uguale a 3 a coefficienti in R, si considerino il sottospazio X generato dai polinomi: p1 = x^3 + x^2 - 6x + 4 p2 = x^2 - 2x + 1 p3 = x^3 -3x^2 + 2x e il sottospazio Y ...
2
12 feb 2012, 14:31

Tes2
Salve a tutti!!! qualcuno sa dirmi dove posso trovare la dimostrazione sull'integrabilità termine a termine della serie di FOurier? grazie milleee
2
12 feb 2012, 17:07

valentina921
Salve a tutti, non riesco a capire l'ultimo passaggio di questa breve dimostrazione, in cui bisogna dimostrare che il determinante di una matrice ortogonale è 1 o -1. $I = C^tC$ se la matrice C è ortogonale, $1 = det(I) = det(C^tC) = det(C^t) det(C) = det (C)^2 $ perchè $det(C^t) det(C) = det (C)^2$ ? non sarebbe così solo se la matrice è simmetrica? Grazie in anticipo Valentina

Lorenzo Pantieri
Ciao ragazzi, cerco aiuto per il seguente teorema. Si consideri una funzione f : R --> R tale che f(x) = 0 se x è irrazionale f(x) = 1/b se x = a/b è razionale (dove a/b è l’unico modo per scrivere il numero razionale x come quoziente di numeri interi a e b primi fra loro). Si dimostri che f è continua in ogni punto irrazionale mentre è discontinua in ogni punto razionale. Grazie anticipate!

stefano871
Salve amici, è la prima volta che scrivo un post... Sono alle prese con G.B.Folland " A cours in abstract Harmonic Analysis".... Ho un piccolo problema legato alla sigma algebra dei boreliani... ovvero: dato [tex]E[/tex] boreliano, allora [tex]xE=\{ xe \quad t.c\quad e \epsilon E \}[/tex] e [tex]E^{-1}=\{ e^{-1} \quad t.c\quad e \epsilon E \}[/tex] sono ancora boreliani. Grazie Anticipatamente
4
11 feb 2012, 21:50

andreabs85
Ciao a tutti! Sono in preparazione del test di Analisi 2 e ho difficoltà con degli esercizi presi direttamente dai temi esame degli anni precedenti pubblicati dal nostro docente. Passo direttamente all'esposizione: Sia \(\displaystyle Q =\{(x, y)\in\mathbb{R}^2: y\geqslant0 , x^2+y^2 \leqslant 2 , |x|\leqslant y^2\} \) Allora \( \int\int_Q((6y+3x+\cos(6y)\arctan(8x^5)+6y\sinh(3x))dxdy \) = A 3arccos(6) B 7 C sen(6)+3cosh(6) D Nessuna delle altre affermazioni `e ...
5
11 feb 2012, 11:03

Worang
Ciao a tutti Ho un grosso problema nel derivare questa funzione y=arcotg sen x Derivando utilizzando la regola per la derivazione di funzioni composte ottengo (senxcosx)/(x^2+1) contrariamente a (cosx)/(1+sen^2x) che dovrei ottenere.. Potreste per favore esplicitare i passaggi utilizzati per ottenere il risultato?
2
12 feb 2012, 16:26

ansioso
ciao ragazzi sbaglio o $\lim_(x to - \infty) log x$ è indertrminato? Su http://www.wolframalpha.com/ viene riportato $\lim_(x to - \infty) log x=infty$...come mai?
5
11 feb 2012, 16:58

nunziox
$int int int_T (ysqrt(z)/(x^2+y^2)) dxdydz$ $T={(x,y,z)inR^3:x^2+y^2+z^2<=1,z>=x^2+y^2}$ Come agisco qua? Uso le cilindriche?
2
11 feb 2012, 17:36

Zephir89
Salve a tutti, ho un problema abbastanza grave mercoledì ho l'esame di analisi 3 e non riesco a risolvere questo problema riguardante l'equazione del calore: RISOLVERE IL PROBLEMA $\{((delU)/(delt)-4(del^2U)/(delx^2)=0text{ }0<x<pitext{ } t>0),(U(x;0)= 5+2sin^2xtext{ }0<=x<=pi),((delU)/(delx)(0;t)=(delU)/(delx)(pi;t)=0text{ }t>0):}$ E DIMOSTRARE CHE LA FUNZIONE U(x,t) tende ad una costante uniformemente in [0:$pi$] per $t \to \infty$ SPECIFICANDO IL VALORE DI TALE COSTANTE Si tratta di un problema di Cauchy-Neumann omogeneo con condizioni al contorno omogenee; l'equazione di per se si risolve abbastanza ...
1
12 feb 2012, 02:33

JackCM
Salve a tutti, sono bloccato nello studio del seguente problema alle derivate parziali, cui traccia recita: Sia \( \alpha \ge 0 \) e \( u(x, y) \) soluzione dell'equazione \[ x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \alpha\, u \] Sapendo che \( u(x,y) = 1 \) sulla circonferenza \( \{ (x,y) \in \mathbb{R}^2 : x^2+y^2=1 \} \),determinare i valori di \( u(x, y) \). Allora si procede con lo studio di \( \alpha=0 \), nel cui caso si ha un sistema omogeneo. Si trovano ...
3
12 feb 2012, 13:35

nico12345
$\lim_{x \to \0}(1-sqrt(cos(x)))/(x^2)$ $=\lim_{x \to \0}(1-sqrt(cos(x)))/(x^2)*[(1+sqrt(cos(x)))/(1+sqrt(cos(x)))]=$ ...
19
31 dic 2011, 12:27

nunziox
$int int int_T (x^2/(1+z^2))dxdydz$ $T={(xyz)inR^3:x^2+y^2<=z^2+1,|z|<=1}$ non riesco a trovare gli estremi di integrazione... ho molte difficoltà.
4
11 feb 2012, 15:58

starsuper
Ho queta matrice che ho ridtto in forma di Jordan ${(((2,0,0,0),(0,2,0,0),(0,0,2,0),(0,0,0,0)))}$ Il polinomio minimo a me torna (t-2)(t-2)(t-2)(t-0) puo andare?
12
10 feb 2012, 17:56

clacatte
ciao a tutti dovrei risolvere questo integrale ma non riesco proprio a capirlo qualcuno mi potrebbe illuminare? grazie mille \(\displaystyle \int ( x^7* cos(x)) \)
4
12 feb 2012, 13:52