Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Al variare di $\alpha$ trova il valore del limite:
$\lim_{x->oo} (x^{\alpha}(e^{-x} - x)(x^2 \log (1 + 1/x^2) - \cos (1/x)))$
Allora siccome l'esponente di $e^{-x}$ tende a $ + oo$ non si può usare taylor.
$\cos (1/x) = 1 - 1/(2x^2) + o(1/x^2)$
$\log (1 + 1/x^2) = 1 / x^2 + o(1/x^2)$
Quindi $\lim_{x->oo} (x^{\alpha}(e^{-x} - x)(x^2 \log (1 + 1/x^2) - \cos (1/x)))$ $=$ $x^{\alpha}(e^{-x}-x)(1 / (2x^2) + o(1/x^2))$ ma ora? $e^{-x} = o(x)$ ?
Grazie

Salve a tutti,
ho il seguente layout di pagina web:
come faccio a mettere o spostare ciò che è racchiuso con linea gialla a sinistra ed a destra ciò che è racchiuso con linea verde; vi posto il template:
<html><head><META content="text/html; charset=ISO-8859-1" http-equiv=Content-Type>
<script src="mouseover.js">
</script>
<script src="subnavig.js">
</script>
<script ...

Buonasera, credo di avere un po' di confusione in testa sull'appartenenza delle funzioni in questi spazi, e riporto qui un paio di esercizi su cui ho dei dubbi, sperando che qualcuno possa aiutarmi a fare un po' di luce:
Determinare per quali $p \in [0, +\infty]$, $u \in L^p(\Omega)$, con $\Omega =(0, +\infty)$
$u(x) = sinx/x$
Semberebbe che $u \in L^(\infty)$ perchè limitata, ma in realtà dato che non è Lebesgue-integrabile (perchè non converge l'integrale del modulo), essa non appartiene ad alcuno ...

Ragazzi vi posto un sistema lineare:
Si determini per quali valori del parametro reale h il seguente sistema non ammette soluzioni:
x - 2hy + z + t = h
y - hz = 0
x + 2y + z - ht = 0
Ragazzi naturalmente questo sistema ho provato a svolgerlo con le matrici e quindi con il teorema di Rouché Capelli per dimostrare l'incompatibilità o compatibilità del sistema stesso.
Personalmente ho ottenuto che per h= -1 il seguente sistema non ammette soluzioni mentre il mio amico sostiene ...

Non riesco a capire come possa una funzione derivabile avere la derivata non continua: la definizione dice che $f$ è continua in $x_0$ se esiste ed è finito il limite $lim_(x to x_0) (f(x)-f(x_0))/(x-x_0) = f'(x_0)$. Ora, come può la derivata può non essere continua?
A tal proposito ho visto un esempio che però non mi ha per niente chiarito le idee: $f(x)={\(x^2*sin(1/x), x!=0), (0, x=0):}$
Si ha che $f'(x)=2x*sin(1/x)-cos(1/x)$ con $x!=0$, ma cosa succede in $x=0$? Se si calcolano i limiti a ...

Salve a tutti.
Un problema di teoria di Galois mi chiede di calcolare il gruppo di galois su $\mathbb Q$ del polinomio $x^7-1$.
Siccome si tratta di trovare il gruppo di Galois di un'estensione ciclotomica su $\mathbb Q$, ponendo $\omega=e^{\frac{2\pi i}{7}}$ in questo caso si ha chiaramente che $Gal \mathbb Q(omega)$/$\mathbb Q$ $\cong (\mathbb Z_7)$* $cong C_6$. Se io ora volessi trovare i campi intermedi di tale estensione, devo considerare i sottogruppi di ...

Se io avessi un limite del genere $\lim_{x->0}$ $1 / (f(x) + g(x))$ oppure $f(x) + g(x)$
Sapendo che $\lim_{x->0} f(x) / g(x) = 0$ e quindi che $f(x) = o (g(x))$ il limite iniziale sarebbe $\lim_{x->0} 1 / (f(x)+ g(x)) \sim 1 / g(x)$ oppure nel secondo caso $\sim g(x)$ ?
Con le stesse funzioni se avessi $\lim_{x->oo} 1 / (f(x) + g(x))$ oppure $f(x) + g(x)$ in questo caso sarebbe $g(x) = o(f(x))$ giusto? Quindi il limite verrebbe $\lim_{x->oo}$ $1 / (f(x) + g(x)) \sim 1 / f(x) $ oppure $\sim f(x)$ nell'altro caso. Così?
Più ...
se A è un'intervallo chiuso e limitato, f(A) e limitata. che teorema è? non riesco a trovarlo...
nello spazio vettoriale r^3 determinare due punti distinti A,B,sulla retta di intersezione dei piani p1,p2 di equazioni cartesiane:
p1:-2x+3y-z=0,
p2:-3x+2y-z=-1,
Inoltre si determini l'equazione parametrica della retta che passa per i punti A,B.
Risultati
A(1,0,-2),B(0,1,3)
(x,y,z)=(1,0,-2)+t(-1,1,5)
non ho capito come trovare i punti,nel mio svolgimento ho trovato il vettore direttore della retta costruendo una matrice con (-2,3,-1) sulla prima riga e (-3,2,-1) sulla seconda poi ho fatto i ...

Buongiorno a tutti,
mi è sorto un dubbio riguardo alla condizione di diagonalizzabilità di un operatore lineare. Leggendo gli appunti presi a lezione, vedo che dire che un operatore lineare è diagonalizzabile è equivalente a dire che un operatore lineare si può rappresentare attraverso una matrice diagonale; poi in seguito, leggo che un operatore lineare è diagonalizzabile se e solo se (cioè, condizione necessaria e sufficiente) ammette una base formata da autovettori; in tal caso, inoltre, gli ...

Ciao ragazzi! vi chiedo nuovamente aiuto su 2 problemini!
eccoli in link:
Esercizio 1
su questo a trovare la temperatura non ho problemi!
Quando però devo trovare la pressione finale, non so come muovermi! Considerando l'Elio un gas Ideale e quindi calcolando il volume totale dallo stato iniziale e usando questo volume nello stato finale, riesco a trovare una pressione che però differisce da quella della soluzione(non di tantissimo, ma è in ogni caso diversa).
Qualche idea per trovare la ...

Salve a tutti!:) Provavo a svolgere il seguente esercizio:
Affinchè la cassa non scivoli è necessario che $\mu_s m_1g > m_1a_1$ con $a_1$ accelerazione della cassa. Non riesco a trovare proprio questa accelerazione.Qualcuno può aiutarmi? Grazie per un'eventuale risposta:)

Ad esempio se ho $\lim_{x->oo} \frac{\log (4x^2 + 1)}{ \log (8x^3 + 1)}$ posso applicare la regola facendo la derivata del numeratore e del denominatore.
$\lim_{x->oo} \frac{\frac{8x}{4x^2 + 1}}{\frac{24x^2}{8x^3 + 1}}$ Se applicassi di nuovo la regola sarebbe:
$\lim_{x->oo} \frac{\frac{8}{8x}}{\frac{48x}{24x^2}}$ ? Il tutto farebbe $1/2$ anche se dovrebbe uscire $2/3$ dove sbaglio?
Grazie

Un pendolo è realizzato con un’asta rigida di massa trascurabile, lunga $L=1m$, a cui è appesa una massa $M=100gr$. Al pendolo, ad una distanza $h=75cm$ dal punto di sospensione, è collegata una molla orizzontale di costante elastica $k=10N/m$, che non è deformata quando il pendolo è verticale. Determinare la frequenza delle oscillazioni del sistema in approssimazione di piccoli angoli.
devo arrivare a calcolarmi l'equazione per il moto armonico ma ho ...

Domanda estremamente semplice, per determinare Sup e Inf mi è sempre stato detto di studiare i limiti per +-infinito e nei punti esclusi dal dominio.
Nel caso tuttavia di una funzione tipo la campana di Gauss, con dominio tutto R, questo procedimento non mi aiuterebbe a trovare il Sup, che invece troverei (in questo singolo caso) annullando la derivata.
La domanda è: nel caso di funzioni non-palesi, il cui andamento non si può dedurre "a occhio", per trovare Sup e Inf bisogna sempre anche ...
Un cubetto di 33 g di ghiaccio a −13 ◦C viene messo in un calorimetro contenente una grande quantit`a di acqua a 0 ◦C. Quando il sistema raggiunge l’equilibrio, quanto ghiaccio, in g, si trova nel calorimetro? Il calore specifico del ghiaccio `e 2090 J kg−1 K−1 e il calore latente di fusione dell’acqua `e 33.5 × 104 J kg−1.
Scusate, come faccio non sapendo la madsa dell'acqua?
Io so che c dell'acqua é 4186 j / kg K
E che la temperatura di equilibrio é data da $(c1m1deltaT1 + c2m2deltaT2)/(c1m1 + c2m2)$
Ho passato le ...

Nello studio del massimi e minimi assoluti, ho bisogno di parametrizzare le rette che compongono il triangolo in figura
http://img804.imageshack.us/img804/8714/tyed.jpg
non conoscendo le formule ho sempre parametrizzato "ad occhio ", cioè la $t$ era assegnata alla variabile verso cui era rivolta la retta, e all'altra variabile era assegnato un numero che indicava la distanza della retta stessa rispetto all'asse. Adesso mi trovo in difficoltà con questa figura in quanto nel segmento inclinato ...

Allora ho il seguente esercizio da risolvere:
Usando la trasformata di Laplace, trovare \(\displaystyle y(t) \) che risolva per \(\displaystyle t \ge0 \) il seguente problema, ora queste tre equazioni sono messe a sistema:
\(\displaystyle y''(t) = y(t)\star t\)
\(\displaystyle y(0)=0 \)
\(\displaystyle y'(0)=1 \)
dove \(\displaystyle \star \) indica il prodotto di convoluzione.
La prima cosa che vorrei chiedere è se qualcuno mi sa spiegare in maniera semplice e se possibile con riferimento a ...

Avendo la seguente formula:
$not(A(x)->B(x))^^AAyB(y)$
devo vedere se è soddisfacibile,il problema è che non sò come trattare i quantificatori $AA$ e $EE$,qualcuno mi potrebbe dire quali regole devo utilizzare?

Esercizio:
Determinare il raggio di convergenza della serie di potenze \(\sum_{n\geq 1} a_n\ x^n\), ove:
\[
a_n:=\int_0^n \exp \left( \frac{t^2}{n}\right)\ \text{d}t\; .
\]