Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve a tutti, vorrei chiedervi un parere su un esercizio che ho bisogno di risolvere
il testo dell’esercizio è il seguente :
Calcolare la F-trasformata della replica periodica x(t), di periodo T=2π, del segnale che vale
$sin(t)$ se $t in [-π,0[$ e $2sin(t)$ se $ t in [0, π[ $
Scrivere inoltre la serie di fourier di x(t) precisando il tipo di convergenza.
Non ho avuto problemi a scrivere la F-trasformata e a calcolare la serie di Fourier, il problema mi si pone nello ...
MI potreste dire come si calcolano la curvatura normale e quella geodetica di una curva su una superficie??? per la curvatura normale di solito mi calcolo le due forme fondamentali e faccio la seconda diviso la prima, ma per la curvatura geodetica non ho molto capito come si calcola operativamente .. vi ringrazio molto...ciao a tutti
Salve a tutti,
Qualcuno mi potrebbe aiutare a derivare la seguente produttoria: $ x prod_(n = 1)^(oo)(1+x^2/(n^2pi^2)) $ .
Grazie infinite
Come si dimostra la continuità di funzioni lineari, seno e coseno?
Semplifico il problema (molto famoso nella matematica e nella combinatoria):
ho un vettore di interi da 0 a N e voglio trovare tutti i possibili sottoinsiemi di k elementi, per poter poi analizzare ogni sottoinsieme e vedere se rispettano certe caratteristiche,
per i più interessati:
In particolare sto lavorando su un grafo e voglio trovare le possibili cricche di ordine k, e per farlo voglio analizzare tutti i sottografi di ordine k per vedere quali sono connessi e quali no.
Grazie!
ho un dubbio molto fastidioso riguardo a questo concetto.
in genere viene spiegata considerando un contenitore chiuso di un liquido puro: a una certa temperatura T una parte delle molecole che si trovano sulla superficie evapora...dopo un po si verifica anche il processo inverso. quando le velocità di condensazione e di evaporazione delle molecole della sostanza sono uguali si giunge in una condizione di equilibrio in cui la quantità di molecole in forma di vapore e quelle in forma di liquido ...
salve a tutti, ho questa funzione:
$ f(x)= ax^2 + b $ se $ x>= 1 $
$ f(x)= 2x + 2b $ se $ x< 1 $ vuole sapere per quali valori di a,b appartenenti a R la funzione è derivabile in x=1..
allora se la funzione è derivabile sarà anche continua, per cui infatti risulta:
$ lim x -> 1+ (ax^2 + b)= a + b $
$ lim x -> 1- (2x + 2b)= 2 + 2b $
quindi ho : $ a= 2 + b $
e fino a qua ci sono, poi io di solito proseguo facendo i limiti dei rapporti incrementali, anche se facendo subito la derivata in questo caso ...
Data la funzione:
$f(x)={(0,if x=0),(x^2sin(1/x),if x!=0):}$
verificare che esiste f'(0)...
allora io faccio la derivata della mia funzione e ovviamente quando vado a sostituire lo 0 mi ritrovo con cos di infinito...
Salve a tutti.. Ho una difficoltà nel calcolo dell'integrale che dovrebbe darmi la funzione di densità della distribuzione t di student (so che riguarda probabilità ma il mio problema è analitico ).
L'integrale che devo svolgere è questo:
$I= (1/sqrt(2pi))*int_(0)^(+oo ) (y/n)^(1/2) * e^(-(z^2y)/(2n))*(1/2)^(n/2)*(1/(Gamma(n/2)))*y^(n/2-1)*e^(-y/2) dy $
il cui risultato dovrebbe essere:
$ (1/sqrt(n*pi)) * (Gamma((n+1)/2) )/(Gamma(n/2))*1/(1+z^2/n)^((n+1)/2) $
Questo è quello che ho fatto io e c'è sicuramente qualcosa di sbagliato perchè ottengo un risultato simile ma non esatto!
$ I= (1/(2*pi*n))^(1/2)*(1/2)^(n/2)*1/(Gamma(n/2))int_(0)^(+oo) y^((n-1)/2)*e^(-(y(z^2+n))/(2n)) dy = $ $=((1/(2*pi*n))^(1/2)*(1/2)^(n/2)*1/(Gamma(n/2)))/(((z^2+n)/(2n))^((n-1)/2))int_(0)^(+oo) ((z^2+n)/(2n)*y)^((n-1)/2)*e^(-(y(z^2+n))/(2n)) dy =$
...
Ciao a tutti,
qualche giorno fa ho sostenuto l'esame di matematica del discreto e ora mi sto preparando in vista dell'orale (che se ci sarà, sarà a giorni ). Sto pertanto dedicandomi alla correzione del compito. Ma un esercizio, che non ho fatto durante l'esame, mi lascia perplesso e con tantissimi dubbi... Mi potreste dare una mano? Ve lo chiedo gentilmente in quanto non ho nessuno in famiglia o amici bravi in questo ambito.
L'esercizio (che con molta probabilità mi sarà chiesto in sede ...
Ciao, qualcuno può aiutarmi a capire questo esercizio per favore?
$L: Mat_(2x2) (CC) -> Mat_(2x2) (CC)$ applicazione lineare t.c. $L ((x,y),(z,w)) = ((x-y, y+z),(z-w,x+w))$
Si dimostri che $L(W) sube W$ dove
$W = {((x,y),(z,w)) in Mat_(2x2) (CC) | ix+y+iz+w=0}$
___
In poche parole mi sta chiedendo di dimostrare che W è un sottospazio invariante, giusto?
Come faccio ad applicare L a W? devo riscrivere W in termini di matrice?
Grazie
devo dimostrare che non vale la seguente relazione: $P(S uu T)subeP(S)uuP(T)$ e non voglio farlo solo attraverso a un controesempio, quindi prendo $X in P(SuuT)$ allora $XsubeSuuT$ da qui come arrivo alla conclusione che non vale la relazione?
Salve, il problema mi sembra banale ma non riesco ad uscirne.
Devo trovare l'uscita di un sistema a tempo discreto LTI $y(n)$ a partire dalla sua risposta al gradino $s(n)=delta(n+1)-delta(n)$ quando in ingresso c'è $x(n)=R_2(n)-R_2(n-2)$
Sfruttando $s(n)=y(u(n))$, la linearità e l'invarianza temporale posso scrivere :
$x(n)=R_2(n)-R_2(n-2)=(u(n)-u(n-1))-(u(n-2)-u(n-3)) $quindi
$y[x(n)]=y[(u(n)-u(n-1))-(u(n-2)-u(n-3)]= s(n)-s(n-1)-s(n-2)+s(n-3)$ da cui un risultato che non è corretto.
Il risultato è corretto se$ R_2(n)-R_2(n-2)=(u(n)-u(n-2))-(u(n-2)-u(n-4))$ , ma rappresentando graficamente il segnale ...
a pag succesiva poi dice: da cui per k tendente a + infinito segue la tesi.
Chi mi spiega i passaggi di questa dimostrazione?
Buonasera a tutti,
desideravo sottoporVi un quesito.
Devo dimostrare la seguente proposizione:
"Siano [tex]V[/tex] uno spazio normato e [tex]L:V\to \mathbb{R}[/tex] un funzionale lineare. Dimostrare che se [tex]L[/tex] ha immagine limitata, allora [tex]L[/tex] è il funzionale nullo."
Io (credo!) di aver dimostrato la suddetta proposizione nel modo seguente.
Supponiamo, per assurdo, che [tex]L[/tex] non sia identicamente nullo, quindi esiste [tex]\overline{v}\in V[/tex] tale che ...
$\int_{}^{} \frac{\sqrt{3+tgx}}{cos^2x} dx=\int_{}^{} \sqrt{3+tgx} d(tgx)$ chiaramente la derivata di $tgx = \frac{1}{cos^2x}$
non capisco con quale regola abbia differenziato per ottenere $d(tgx)$ ovvero non mi è chiaro come si possa sostituire anche perchè
per esempio se prendo questo integrale
$\int_{}^{}x\sqrt{1+x} dx$ sostituisco $\sqrt{1+x}=t$ cioè $x= t^2-1$
differenzio e ottengo $dx=2t dt$
sopra invece non riesco a differenziare
Salve,
a parte l'atomo d'idrogeno,
si conosce la forma dei nuclei di tutti gli elementi più pesanti?
Hanno una struttura ben ordinata?... oppure sono un semplice ammasso, (quasi) sferico, in cui ci sono protoni e neutroni ammassati a casaccio?
Essendoci la forza di repulsione tra protoni, il legame con i neutroni non dovrebbe essere più probabile (stabile) rispetto a quello protone-protone?
Grazie
la coppia ordinata come la definisce Kuratowski è $(x,y):={{x},{x,y}}$. Adesso ho capito che non si prende solo l'insieme costituito da x e y perché ciò non mi garantisce l'ordine ma scritta in questo modo perché l'ordine è assicurato?
Buonasera ragà, ho svariati problemi con un esercizio di algebra lineare.
Ho una trasformazione affine $ varphi : V_3(R)rarr V_4(R) $ definita in questo modo:
$ varphi ((x_1,x_2,x_3))=(y_1,y_2,y_3,y_4) $ dove
$ ( ( y_1 ),( y_2 ),( y_3 ),( y_4 ) ) = ( ( 2 , 0 , 1 ),( 0 , 2 , 1 ),( 1 , -1 , 1 ),( 1 , 1 , 1 ) ) ( ( x_1 ),( x_2 ),( x_3 ) ) +( ( 1 ),( 0 ),( -1 ),( 1 ) ) $
Le coordinate $x_1,x_2,x_3,y_1,y_2,y_3,y_4$ sono date rispetto ai versori.
1- Calcolare la $dim(Im(varphi))$
Per calcolarmi questa dimensione mi sono andato a calcolare il rango della matrice
$( ( 2 , 0 , 1 ),( 0 , 2 , 1 ),( 1 , -1 , 1 ),( 1 , 1 , 1 ) )$
il quale risulta uguale a 3. $ rArr rank(Im(varphi))=3=dim(Im(varphi)) $
Giusto?
2- È vero che $ (4,3,0,4) in Im(varphi)$ ? Se si calcolate ...
Se consideriamo il lavoro compito da una forza elettrica su una carica q si può dire che il lavoro compiuto da una forza è una funzione di stato?
Perchè il campo elettrico statico è una funzione di stato? Che relazione c è tra campo elettrico e lavoro compiuto sulla carica?
Vorrei fissare questi concetti così che parlandone vengano automaticamente...oltre alla teoria potreste farmi qualche esempio "terra-terra" ?
Grazie a tutti