Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Ciao ragazzi, vorrei chiedervi un aiuto a capire una cosa scritta dal prof di fisica 1
Avrei questa simbologia: $(dA)/(d(1+x))|_(x=5)$, e non capisco cosa voglia dire derivare per $1+x$.
io so derivare per variabili, che caspita vorra mai dire d(1+x)? in questo caso? Che derivo per una funzione, sono un po' disorientato e vorrei formalizzare questa cosa.
Grazie per le eventuali manine.

Stavo vedendo la dimostrazione che due chiusure algebriche di un campo sono isomorfe e ad un certo punto il libro usa il seguente fatto che non dimostra.
Sia $\phi : F-->K$ un omomorfismo di campi tale che K è una chiusura algebrica di F $=>$ K è un estensione algebrica di $\phi (F)$
Non mi è chiaro il perché.

Ciao a tutti
Premetto che on sto confondendo quello che è un trick usato in modo spassionato nel primo corso di meccanica conla teoria dell'analisi (thm derivata della funzione inversa), bensì vorrei capire come dimostrarmi questa cosa:
volendo usare la notaizone dy/dx io so che $(f^(-1))'(y_0)=1/(f'(x_0))$ ossia tradotto:
$(f^(-1))'(y)=1/((dy)/(dx))$ che spesso subisce la tortura $=(dx)/(dy)$ va da séche non sia questo scambio di rapporto quel che si fa, però mi lascia incuriosito come dimostrare quello ...

Devo studiare il grafico qualitativo di $y(x)$ sapendo $y^5(x) +y^3(x) x^2+1=0$, non so se si possono ricavare altre informazioni oltre a quelle che ho già trovato
Per iniziare l'ho riscritta così $ -\frac{1}{y^3}-y^2=x^2$, e poi svolgendo i limiti $x\to\pm\infty$ segue $y(x)\to 0^-$
Inoltre scrivendo $y(x)(y^4(x) +y^2(x) x^2)=-1$ segue $y(x)\le 0$
Dal teorema di Dini $y'(x)=-\frac{2xy(x)}{5y^2(x)+3x^2}$ da cui ho dedotto che $y'(0)=0$ e $y'(x)\ge0$ per $x>0$ e $y'(x)\le0$ per ...
Buongiorno,
sono in difficoltà a verificare se la funzione f(x)=x(sen x^3) è integrabile nell'intervallo [2,+infinito]. Ho valutato le due funzioni e la funzione lineare è positiva nell'intervallo considerato e la funzione sen è limitata tra -1 e 1, ho provato a verificare la convergenza dividendo per x^4 ma non riesco a venirne a capo. Grazie a chi mi può aiutare

Salve ragazzi, non mi viene il risultato di questo problema e penso che si sia sbagliato l'autore del testo, ma per sicurezza chiedo a voi delucidazioni.
Una sbarretta omogenea di massa M e lunghezza L=1 m è vincolata a ruotare in un piano verticale intorno ad un asse orizzontale passante per il suo estremo O. Inizialmente la sbarretta è ferma in posizione di equilibrio stabile. Essa viene colpita in modo completamente anelastico nel proprio centro di massa da un proiettile ...

Buonasera a tutti.
Eccomi nuovamente a rivolgermi a voi per venire a capo di un problema che non riesco a risolvere (o, meglio, non riesco a risolvere utilizzando i metodi "disponibili"). L'esercizio, tratto dal Walker, corso di fisica, per il biennio dei licei scientifici recita così:
Due gatti stanno accovacciati uno accanto all'altro su una staccionata alta 2,0 m. L'improvviso e violento abbaiare di un grosso cane, uscito di corsa da una casa vicina, li fa saltare dalla staccionata. Il ...
Mi aiutate a rispolverare le forze in gioco nel moto del pendolo descritte da questa equazione differenziale?
$mL^2 ddot (\theta) + c dot (\theta) + mgLsin(\theta) = u$
$L$ è lunghezza del filo che tiene il pendolo di massa $m$
$\theta$ l'angolo di spostamento del filo.
$u$ è il momento torcente risultante
[list=1]
[*:36ptbs4q]il primo termine della somma rappresenta il momento di inerzia moltiplicato per l'accelerazione e quindi il momento della ...

Salve a tutti.
Non riesco a capire la dimostrazione della proposizione riportata nel titolo.
Sia $EsubeR^n$ misurabile secondo Lebesgue, $f:E->R^n$ continua in $E$.
Allora $f$ è misurabile secondo Lebesgue.
Per definizione $f$ è misurabile, se è misurabile l'insieme $E_α={x inE:f(x)>α}$ $AAα∈R$.
Per acquisire la tesi è sufficiente provare che l'insieme $E_α$ sia aperto. Fissiamo quindi $\alphainR$ , ...

A differenza di [inline]>>[/inline] e [inline]

Salve a tutti,
ho una pala di elica che ruota in senso antiorario. Inoltre, l'osservatore è posto nel piano di rotazione ad y=0 e z>0.
Il setup è come nel disegno sottostante. La pala si assume come una linea. La rotazione è antioraria. L'osservatore è in verde.
$\vec{R}$ è il vettore distanza tra un singolo elemento di pala e l'osservatore. Date $x,y,z$ le coordinate dell'elemento di pala e $x_0,y_0,z_0$ le coordinate dell'osservatore, il modulo di ...

Salve ho un esercizio di esame che dice questo:
Data $f(x,y)=y^7+x^2y+x^6$ dimostrare che esiste un unica $y(x)$ tale che $f(x,y(x))=0$ per ogni $x$.
Ho mostrato che in ogni punto diverso da $(0,0)$ la mia funzione ha gradiente non nullo e quindi in quei punti è applicabile il teorema di Dini. Il mio dubbio sta nel fatto che il teorema di Dini mi garantisce che per ognuno di quei punti esiste un intorno in cui esiste un unica $y(x)$ (unica ...

Buongiorno a tutti sono nuovo, ho bisogno di un grande aiuto. Devo calcolare una curva politropica teorica sapendo il volume massimo e volume minimo di un cilindro e sapendo la pressione iniziale 1bar e la t iniziale 400K come posso calcolare l'esponente della politropica?

Scusate a tutti, sto studiando un paper per un esame e non mi è chiaro un passaggio che l'autore fa.
Data $U \subset \CC$ palla, sia $f:U \to \CC$ un polinomio di grado $d >= 2$, supponiamo che $|f'| >= \alpha > 0$ su tutto $U$ e sia poi $\gamma: [0,1] \to U$ la retta che collega due punti $x,y \in U$.
Supponiamo inoltre che $f'$ non vari più di $1/2 \alpha^2$ su $U$.
L'autore allora sputa fuori le seguenti ...

$ { ( F_(0x)-F_a-Mg_x=Ma_(cm) ),( R_n-Mg_y-F_(0y)=0 ),( r*F_a=I(a_(cm)/r) ):} $
Salve, avrei dei dubbi su questo problema. Una sfera di massa M=4 kg sale lungo un piano inclinato di un angolo $ alpha =30^@ $ sotto l'azione di una forza orizzontale di intensità F0. Il moto è uniforme e di puro rotolamento. Calcolare il modulo della reazione normale del piano.
In apertura ho mostrato l'impostazione che ho dato al problema che tuttavia in questo modo risulta irrisolvibile in quanto sono presenti 4 incognite (F0, Fa, acm, Rn) in 3 ...

Buongiorno vorrei provare questa regola di calcola valida in un generico gruppo $G$, cioè siano $a,b \in G$ e $m,n \in \mathbb{Z}$, si ha che
i) $(m+n)a=ma+na$
ii) $n(a+b)=na+nb$
Provo la 1) per induzione su $n$
$n=0$, e $m \in mathbb{Z}$ risulta $(m+n)a=(m+0)a=ma=ma+0=ma+0a=ma+na$, quindi l'asserto è vero.
$n>0, m \in \mathbb{Z}$, per ipotesi induttiva $(n-1)a+ma=((n-1)+m)a$. Si ha allora ...

mi servirebbe di sapere se esiste la forma z=u(x,y)+iv(x,y) della funzione di variabile complessa
f(z)=1/((z-1)^n+1) grazie in anticipo!!

Buonasera.
Riporto le definizioni di intervallo superiormente semiaperto e pluri-intervallo superiormente semiaperto.
Definizione: Si definisce intervallo superiormente semiaperto $I$ di $RR^n$ come
$I:=[a_1,b_1)\times[a_2,b_2)\times...\times[a_n,b_n)$
dove $a_i,b_i \in RR$ e $a_i \le b_i$ per ogni $i=1,2,...,n$.
Definizione: Si definisce pluri-intervallo superiormente semiaperto $P$ di $RR^n$ come
$P=I_1\cup I_2 \cup ... \cup I_k$
dove $I_j$ con $j=1,2,...,k$, ...

La figura 1 sopra mostra l'apparato semplificato di Michelson e
Morley. Tale apparato è in posizione tale che il percorso che la luce deve fare per andare dall'interferometro P allo specchio S1 sia parallelo alla direzione di moto della Terra illustrata in figura. Dalla figura si vede che gli specchi S1 ed S2 sono equidistanti dall'interferometro posto in P. Scartata l'esistenza del "vento d'etere" che fu scardinata proprio dell'esperimento di Michelson-Morley, ciò di cui ...